

iOS Apprentice
Matthijs Hollemans

Copyright ©2016 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without
prior written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

License
By purchasing iOS Apprentice, you have the following license:

• You are allowed to use and/or modify the source code in iOS Apprentice in as
many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are
included in iOS Apprentice in as many apps as you want, but must include this
attribution line somewhere inside your app: “Artwork/images/designs: from iOS
Apprentice book, available at www.raywenderlich.com”.

• The source code included in iOS Apprentice is for your personal use only. You are
NOT allowed to distribute or sell the source code in iOS Apprentice without prior
authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students;
they would need to purchase their own copies.

iOS Apprentice

raywenderlich.com 2

About the author
Matthijs Hollemans is a mystic who lives at the top of a mountain
where he spends all of his days and nights coding up awesome
apps. Actually he lives below sea level in the Netherlands and is
pretty down-to-earth but he does spend too much time in Xcode.
Check out his website at www.matthijshollemans.com.

About the cover
Striped dolphins live to about 55-60 years of age, can travel in pods numbering in
the thousands and can dive to depths of 700 m to feed on fish, cephalopods and
crustaceans. Baby dolphins don't sleep for a full a month after they’re born. That
puts two or three sleepless nights spent debugging code into perspective, doesn't
it? :]

iOS Apprentice

raywenderlich.com 3

Table of Contents: Extended
Tutorial 4: StoreSearch 6...

The StoreSearch app 6..
In the beginning… 8...
Custom table cells and nibs 31...
The debugger 50...
It’s all about the networking 58..
Asynchronous networking 87...
URLSession 99...
The Detail pop-up 128...
Fun with landscape 168...
Refactoring the search 200...
Internationalization 222...
The iPad 243..
Distributing the app 273..
The end 289..

iOS Apprentice

raywenderlich.com 5

4Tutorial 4: StoreSearch
By Matthijs Hollemans

The StoreSearch app
One of the most common things that mobile apps do is talking to a server on the
internet. It’s beyond question: if you’re writing mobile apps, you need to know how
to upload and download data.

In this lesson you’ll learn how to do HTTP GET requests to a web service, how to
parse JSON data, and how to download files such as images.

You are going to build an app that lets you search the iTunes store. Of course, your
iPhone already has apps for that (“App Store” and “iTunes Store” to name two), but
what’s the harm in writing another one?

Apple has made a web service available for searching the entire iTunes store and
you’ll be using that to learn about networking.

The finished app will look like this:

The finished StoreSearch app

raywenderlich.com 6

You will add search capability to your old friend, the table view. There is an
animated pop-up with extra information when you tap an item in the table. And
when you flip the iPhone over to landscape, the layout of the app completely
changes to show the search results in a different way.

There is also an iPad version of the app:

The app on the iPad

The to-do list for building StoreSearch is roughly as follows:

• Create a table view (yes, again!) with a search bar.

• Perform a search on the iTunes store using their web service.

• Understand the response from the iTunes store and put the search results into
the table view.

• Each search result has an artwork image associated with it. You’ll need to
download these images separately and place them in the table view as well.

• Add the pop-up screen with extra info that appears when you touch an item.

• When you flip to landscape, the whole user interface changes and you’ll show all
of the icons in a paging scroll view.

• Add support for other languages. Having your app available in languages besides
English dramatically increases its audience.

• Make the app universal so it runs on the iPad.

This tutorial fills in the missing pieces and rounds off the knowledge you have
obtained from the previous tutorials.

You will also learn how to distribute your app to beta testers with so-called Ad Hoc
Distribution, and how to submit it to the App Store.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 7

There’s a lot of work ahead, so let’s get started!

In the beginning…
Fire up Xcode and make a new project. Choose the Single View Application
template and fill in the options as follows:

• Product Name: StoreSearch

• Organization Name: your name

• Organization Identifier: com.yourname

• Language: Swift

• Devices: iPhone

• Use Core Data, Include Unit Tests, Include UI Tests: leave these unchecked

When you save the project Xcode gives you the option to create a so-called Git
repository. You’ve ignored this option thus far but now you should enable it:

Creating a Git repository for the project

If you don’t see this option, click the Options button in the bottom-left corner.

Git and version control
Git is a so-called revision control system. In short, Git allows you to make
snapshots of your work so you can always go back later and see a history of what
you did. Even better, a tool such as Git allows you to work on the same code with
multiple people.

Imagine what happens if two programmers changed the same source file at the
same time. Things will go horribly wrong! It’s quite likely your changes will
accidentally be overwritten by a colleague’s. I once had a job where I had to shout

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 8

down the hall to another programmer, “Are you using file X?” just so we wouldn’t be
destroying each other’s work.

With a revision control system such as Git, each programmer can work
independently on the same files, without a fear of undoing the work of others. Git is
smart enough to automatically merge all of the changes, and if there are any
conflicting edits it will let you resolve them before breaking anything.

Git is not the only revision control system out there but it’s the most popular one
for iOS. A lot of iOS developers share their source code on GitHub (github.com), a
free collaboration site that uses Git as its engine. Another popular system is
Subversion, often abbreviated as SVN. Xcode has built-in support for both Git and
Subversion.

In this tutorial I’ll show you some of the basics of using Git. Even if you work alone
and don’t have to worry about other programmers messing up your code, it still
makes sense to use it. After all, you might be the one messing up your own code
and with Git you’ll always have a way to go back to your old – working! – version of
the code.

The first screen in StoreSearch will have a table view with a search bar, so let’s
make the view controller for that screen.

➤ In the project navigator, rename ViewController to SearchViewController.

➤ In SearchViewController.swift, change the class line to:

class SearchViewController: UIViewController {

Note that this is a plain UIViewController, not a table view controller.

➤ In the storyboard, change the Custom Class for the view controller to
SearchViewController (in the Identity inspector).

➤ For good measure, run the app to make sure everything works. You should see a
white screen with the status bar on top.

Notice that the project navigator now shows M (and possibly A) icons next to some
of the filenames in the list:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 9

Xcode shows the files that are modified

If you don’t see these icons, then choose the Source Control → Refresh Status
option from the Xcode menu bar. (If that gives an error message or still doesn’t
work, simply restart Xcode. That’s a good tip in general: if Xcode is acting weird,
restart it.)

An M means the file has been modified since the last “commit” and an A means this
is a file that has been added since then.

So what is a commit?

When you use a revision control system such as Git, you’re supposed to make a
snapshot every so often. Usually you’ll do that after you’ve added a new feature to
your app or when you’ve fixed a bug, or whenever you feel like you’ve made
changes that you want to keep. That is called a commit.

When you created the project, Xcode made the initial commit. You can see that in
the Project History window.

➤ Choose Source Control → History…

The history of commits for this project

You may get a popup at this point asking for permission to access your contacts.
That allows Xcode to add contact information to the names in the commit history.
This can be useful if you’re collaborating with other developers. You can always
change this later under Security & Privacy in System Preferences.

➤ Let’s commit the change you just made. Close the history window. From the

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 10

Source Control menu, choose Commit:

The Commit menu option

This opens a new window that shows in detail what changes you made. This a good
time to quickly review the differences, just to make sure you’re not committing
anything you didn’t intend to:

Xcode shows the changes you’ve made since the last commit

It’s always a good idea to write a short but clear reason for the commit in the text
box at the bottom. Having a good description here will help you later to find specific
commits in your project’s history.

➤ Write: Rename ViewController to SearchViewController

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 11

Writing the commit message

➤ Press the Commit 4 Files button. You’ll see that in the project navigator the M
and A icons are gone (at least until you make the next change).

If you’re wondering why it said “Commit 4 Files”, renaming ViewController.swift
counts as two – deleting the old file and adding it back with the new name – so in
total four files were modified.

The Source Control → History window now shows two commits:

Your commit is listed in the project history

If you click Show modified files, Xcode will show you what has changed with that
commit. You’ll be doing commits on a regular basis and by the end of the tutorial
you’ll be a pro at it.

Creating the UI
The app still doesn’t do much yet. In this section, you’ll build the UI to look like
this, a search bar on top of a table view:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 12

The app with a search bar and table view

Even though this screen uses the familiar table view, it is not a table view controller
but a regular UIViewController.

You are not required to use a UITableViewController if you have a table view. For
this app I will show you how to do without.

UITableViewController vs. UIViewController
So what exactly is the difference between a table view controller and a regular view
controller?

First off, UITableViewController is a subclass of UIViewController so it can do
everything that a regular view controller can. However, it is optimized for use with
table views and has some cool extra features.

For example, when a table cell contains a text field, tapping that text field will bring
up the on-screen keyboard. UITableViewController automatically scrolls the cells
out of the way of the keyboard so you can always see what you’re typing.

You don’t get that behavior for free with a plain UIViewController, so if you want
this feature you’ll have to program it yourself.

UITableViewController does have a big restriction: its main view must be a
UITableView that takes up the entire screen space (except for a possible navigation
bar at the top, and a toolbar or tab bar at the bottom).

If your screen consists of just a UITableView, then it makes sense to make it a

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 13

UITableViewController. But if you want to have other views as well, the more basic
UIViewController is your only option.

That’s the reason you’re not using a UITableViewController in this app. Beside the
table view the app has another view, a UISearchBar. It is possible to put the search
bar inside the table view as a special header view, but for this app it will always be
sitting on top.

➤ Open the storyboard and use the View as: panel to switch to the iPhone SE
dimensions. It doesn’t really matter which iPhone model you choose here, but the
iPhone SE makes it easiest to follow along with this book.

➤ Drag a new Table View into the view controller.

➤ Make the Table View as big as the main view (320 by 568 points) and then use
the Pin menu at the bottom to attach the Table View to the edges of the screen:

Creating constraints to pin the Table View

Remember how this works? This app uses Auto Layout, which you learned about in
the Bull’s Eye and Checklists tutorials. With Auto Layout you create constraints
that determine how big the views are and where they go on the screen.

➤ First, uncheck Constrain to margins. Each screen has 16-point margins on the
left and right (although you can change their size). When “Constrain to margins” is
enabled you’re pinning to these margins. That’s no good here; you want to pin the
Table View to the edge of the screen instead.

➤ In the Spacing to nearest neighbor section, select the red bars to make four

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 14

constraints, one on each side of the Table View. Keep the spacing values at 0.

This pins the Table View to the edges of its superview. Now the table will always fill
up the entire screen, regardless of whether you’re running the app on a 3.5-inch or
a 5.5-inch device.

➤ Make sure Update Frames says Items of New Constraints. This moves the
view to the position dictated by the new constraints, if necessary.

➤ Click the Add 4 Constraints button to finish.

If you were successful, there are now four blue bars surrounding the table view,
one for each constraint. In the outline pane there is also a new Constraints section:

The new constraints in the outline pane

➤ From the Object Library, drag a Search Bar into the view. (Be careful to pick the
Search Bar and not “Search Bar and Search Display Controller”.) Place it at Y = 20
so it sits right under the status bar.

Make sure the Search Bar is not placed inside the table view. It should sit on the
same level as the table view in the outline pane:

Search Bar must be below of Table View (left), not inside (right)

If you did put the Search Bar inside the Table View, you can pick it up in the outline
pane and drag it below the Table View.

➤ Pin the Search Bar to the top and left and right edges, 3 constraints in total.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 15

The constraints for the Search Bar

You don’t need to pin the bottom of the Search Bar or give it a height constraint.
Search Bars have an intrinsic height of 44 points.

➤ In the Attributes inspector for the Search Bar, change the Placeholder text to
App name, artist, song, album, e-book.

The view controller’s design should look like this:

The search view controller with Search Bar and Table View

You know what’s coming next: connecting the Search Bar and the Table View to
outlets on the view controller.

➤ Add the following outlets to SearchViewController.swift:

@IBOutlet weak var searchBar: UISearchBar!
@IBOutlet weak var tableView: UITableView!

Recall that as soon as an object no longer has any strong references, it goes away
– it is deallocated – and any weak references to it become nil.

Per Apple’s recommendation you’ve been making your outlets weak. You may be
wondering, if the references to these view objects are weak, then won’t the objects
get deallocated too soon?

Exercise. What is keeping these views from being deallocated?

Answer: Views are always part of a view hierarchy and they will always have an
owner with a strong reference: their superview.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 16

The SearchViewController’s main view object holds a reference to both the search
bar and the table view. This is done inside UIKit and you don’t have to worry about
it. As long as the view controller exists, so will these two outlets.

Outlets can be weak because the view hierarchy already has strong references

➤ Switch back to the storyboard and connect the Search Bar and the Table View to
their respective outlets. (Ctrl-drag from the view controller to the object that you
want to connect.)

If you run the app now, you’ll notice a small problem: the first rows of the Table
View are hidden beneath the Search Bar.

The first row is only partially visible

That’s not so strange because you put the Search Bar on top of the table, obscuring
part of the table view below.

To fix this you could nudge the Table View down a few pixels. However, according to
the iOS design guidelines the content of a view controller should take up the entire
screen space.

It’s better to leave the size of the Table View alone and to make the Search Bar
partially translucent to let the contents of the table cells shine through. But it would
still be nice to see the first few rows in their entirety.

You can compensate for this with the content inset attributes of the Table View.
Unfortunately, this attribute is unavailable in Interface Builder so you’ll have to do

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 17

this from code.

➤ Add the following line to viewDidLoad() in SearchViewController.swift:

override func viewDidLoad() {
 super.viewDidLoad()
 tableView.contentInset = UIEdgeInsets(top: 64, left: 0, bottom: 0,
 right: 0)
}

This tells the table view to add a 64-point margin at the top, made up of 20 points
for the status bar and 44 points for the Search Bar.

Now the first row will always be visible, and when you scroll the table view the cells
still go under the search bar. Nice.

Doing fake searches
Before you search the iTunes store, it’s good to understand how the UISearchBar
component works.

In this section you’ll get the text to search for from the search bar and use that to
put some fake search results into the table view. Once you’ve got that working, you
can build in the web service. Small steps!

➤ Run the app. If you tap in the search bar, the on-screen keyboard will appear, but
it still doesn’t do anything when you tap the Search button.

Keyboard with Search button

(If you’re using the Simulator you may need to press ⌘K to bring up the keyboard,
and Shift+⌘K to allow typing from your Mac keyboard.)

Listening to the search bar is done – how else? – with a delegate. Let’s put this
delegate code into an extension.

➤ Add the following to the bottom of SearchViewController.swift, below the final

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 18

closing bracket:

extension SearchViewController: UISearchBarDelegate {
 func searchBarSearchButtonClicked(_ searchBar: UISearchBar) {
 print("The search text is: '\(searchBar.text!)'")
 }
}

Recall that you can use extensions to organize your source code. By putting all the
UISearchBarDelegate stuff into its own extension you keep it together in one place
and out of the way of the rest of the code.

The UISearchBarDelegate protocol has a method searchBarSearchButtonClicked()
that is invoked when the user taps the Search button on the keyboard. You will
implement this method to put some fake data into the table.

In a little while you’ll make this method send a network request to the iTunes store
to find songs, movies and e-books that match the search text that the user typed,
but let’s not do too many new things at once!

Tip: I always put strings in between single quotes when I use print(). That
way you can easily see whether there are any trailing or leading spaces in the
string. Also note that searchBar.text is an optional, so we need to unwrap it.
It will never actually return nil so a ! will do just fine.

➤ In the storyboard, Ctrl-drag from the Search Bar to Search View Controller (or
the yellow circle at the top). Connect to delegate.

➤ Run the app, type something in the search bar and press the Search button. The
Xcode Debug pane should now print the text you typed.

The search text in the debug pane

➤ Add the following two (empty) extensions to SearchViewController.swift:

extension SearchViewController: UITableViewDataSource {
}

extension SearchViewController: UITableViewDelegate {

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 19

}

Adding the UITableViewDataSource and UITableViewDelegate protocols wasn’t
necessary in the previous tutorials because you used a UITableViewController
there, which by design already conforms to these protocols.

For this app you’re using a regular view controller and therefore you’ll have to hook
up the data source and delegate protocols yourself.

➤ In the storyboard, Ctrl-drag from the Table View to Search View Controller.
Connect to dataSource. Repeat and connect to delegate.

Note that you connected something to Search View Controller’s “delegate” twice:
the Search Bar and the Table View.

The way Interface Builder presents this is a little misleading: the delegate outlet is
not from SearchViewController, but belongs to the thing that you Ctrl-dragged
from. So you connected the SearchViewController to the delegate outlet on the
Search Bar and also to the delegate (and dataSource) outlets on the Table View:

The connections from Search View Controller to the other objects

➤ Build the app. Whoops… Xcode says, “Not so fast, buddy!”

By making the extension you said the SearchViewController would play the role of
table view data source but you didn’t actually implement any of those data source
methods yet.

➤ Change the first extension to:

extension SearchViewController: UITableViewDataSource {
 func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 0
 }

 func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 return UITableViewCell()
 }
}

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 20

This simply tells the table view that it has no rows yet. Soon you’ll give it some fake
data to display, but for now you just want to be able to run the app without errors.

Often you can declare to conform to a protocol without implementing any of its
methods. This works fine for UISearchBarDelegate and UITableViewDelegate, but
obviously not in the case of UITableViewDataSource!

A protocol can have optional and required methods. If you forget a required
method, a compiler error is your reward. (Swift is more strict about this than
Objective-C, which simply crashes if a required method is missing.)

➤ Build and run the app to make sure everything still works.

Note: Did you notice a difference between these data source methods and the
ones from the previous tutorials? Look closely…

Answer: They don’t have the override keyword in front of them.

In the previous apps, override was necessary because you were dealing with a
subclass of UITableViewController, which already provides its own version of
the tableView(numberOfRowsInSection) and “cellForRowAt” methods.

In those apps you were “overriding” or replacing those methods with your own
versions, hence the need for the override keyword.

Here, however, your base class is not a table view controller but a regular
UIViewController. Such a view controller doesn’t have any table view methods
yet, so you’re not overriding anything here.

As you know by now, a table view needs some kind of data model. Let’s start with a
simple Array.

➤ Add an instance variable for the array (this goes inside the class brackets, not in
any of the extensions):

var searchResults: [String] = []

This creates an empty array object that can hold strings. You could also have
written this as:

var searchResults = [String]()

Both lines do the exact same thing. You’ll see both styles of notation used in Swift
programs.

The search bar delegate method will put some fake data into this array and then
use it to fill up the table.

➤ Replace the searchBarSearchButtonClicked() method with:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 21

func searchBarSearchButtonClicked(_ searchBar: UISearchBar) {
 searchResults = []

 for i in 0...2 {
 searchResults.append(String(format: "Fake Result %d for '%@'", i,
 searchBar.text!))
 }

 tableView.reloadData()
}

Here the notation [] means you instantiate a new [String] array and put it into the
searchResults instance variable. This is done each time the user performs a search.
If there was already a previous array then it is thrown away and deallocated. (You
could also have written searchResults = [String]() to do the same thing.)

You add a string with some text into the array. Just for fun, that is repeated 3 times
so your data model will have three rows in it.

When you write for i in 0...2, it creates a loop that repeats three times because
the closed range 0...2 contains the numbers 0, 1, and 2. Note that this is different
from the half-open range 0..<2, which only contains 0 and 1. You could also have
written 1...3 but programmers like to start counting at 0.

You’ve seen format strings before. The format specifier %d is a placeholder for
integer numbers. Likewise, %f is for numbers with a decimal point (the floating-
point numbers). The placeholder %@is for all other kinds of objects, such as strings.

The last statement in the method reloads the table view to make the new rows
visible, which means you have to adapt the data source methods to read from this
array as well.

➤ Change the tableView(numberOfRowsInSection) method to:

func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return searchResults.count
}

This simply returns the number of elements in the searchResults array. When the
app first starts up, searchResults will have an empty array because no search is
done yet and simply returns 0.

➤ Finally, change tableView(cellForRowAt) to:

func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cellIdentifier = "SearchResultCell"

 var cell: UITableViewCell! = tableView.dequeueReusableCell(
 withIdentifier: cellIdentifier)
 if cell == nil {
 cell = UITableViewCell(style: .default,

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 22

 reuseIdentifier: cellIdentifier)
 }

 cell.textLabel!.text = searchResults[indexPath.row]
 return cell
}

You’ve seen something like this before. You create a UITableViewCell by hand and
put the data for this row into its text label.

➤ Run the app. If you search for anything, a couple of fake results get added to the
data model and are shown in the table.

Search for something else and the table view updates with new fake results.

The app shows fake results when you search

There are some improvements you can make. To begin with, it’s not very nice that
the keyboard stays on the screen after you press the Search button. It obscures
about half of the table view and there is no way to dismiss the keyboard by hand.

➤ Add the following line at the start of searchBarSearchButtonClicked():

func searchBarSearchButtonClicked(_ searchBar: UISearchBar) {
 searchBar.resignFirstResponder()
 . . .

This tells the UISearchBar that it should no longer listen to keyboard input. As a
result, the keyboard will hide itself until you tap inside the search bar again.

You can also configure the table view to dismiss the keyboard with a gesture.

➤ In the storyboard, select the Table View. Go to the Attributes inspector and set
Keyboard to Dismiss interactively.

The search bar still has an ugly white gap above it. It would look a lot better if the
status bar area was unified with the search bar. Recall that the navigation bar in the
Map screen from the MyLocations tutorial had a similar problem. You can use the
same trick to fix it.

➤ Add the following method to the SearchBarDelegate extension:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 23

func position(for bar: UIBarPositioning) -> UIBarPosition {
 return .topAttached
}

Now the app looks a lot smarter:

The search bar is “attached” to the top of the screen

If you were to look in the API documentation for UISearchBarDelegate you wouldn’t
find this position(for) method. Instead, it is part of the UIBarPositioningDelegate
protocol, which the UISearchBarDelegate protocol extends. (Like classes, protocols
can inherit from other protocols.)

The API documentation
Xcode comes with a big library of documentation for developing iOS apps. Basically
everything you need to know is in here. Learn to use the Xcode documentation
browser – it will become your best friend!

There are a few ways to get documentation about a certain item in Xcode. There is
Quick Help, which shows info about the thing under the text cursor:

Simply have the Quick Help inspector open (the second tab in the inspector
pane) and it will show context-sensitive help. Put the text cursor on the thing you
want to know more about and the inspector will give a summary on it. You can click
any of the blue text to jump to the full documentation.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 24

You can also get pop-up help. Hold down the Option (Alt) key and hover over the
item that you want to learn more about. Then click the mouse:

And of course, there is the full-fledged documentation window. You can access it
from the Help menu, under Documentation and API Reference. Use the bar at
the top to search for the item that you want to know more about:

Improving the data model
So far you’ve added String objects to the searchResults array, but that’s a bit
limited. The search results that you’ll get back from the iTunes store include the
product name, the name of the artist, a link to an image, the purchase price, and
much more.

You can’t fit all of that in a single string, so let’s create a new class to hold this
data.

➤ Add a new file to the project using the Swift File template. Name the new class
SearchResult.

➤ Replace the contents of SearchResult.swift with:

class SearchResult {
 var name = ""
 var artistName = ""

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 25

}

This adds two properties to the new SearchResult class. In a little while you’ll add
several others.

In the SearchViewController you will no longer add strings to the searchResults
array, but instances of SearchResult.

➤ In SearchViewController.swift, change the for in loop in the search bar
delegate method to:

for i in 0...2 {
 let searchResult = SearchResult()
 searchResult.name = String(format: "Fake Result %d for", i)
 searchResult.artistName = searchBar.text!
 searchResults.append(searchResult)
}

This creates the new SearchResult object and simply puts some fake text into its
name and artistName properties. Again, you do this in a loop because just having
one search result by itself is a bit lonely.

Exercise. At this point Xcode gives an error message. Can you explain why?

Answer: The type of searchResults is array-of-String, but here you’re trying to put
SearchResult objects into the array. To make it accept SearchResult objects, you
also need to change the declaration of the instance variable:

var searchResults: [SearchResult] = []

➤ At this point, tableView(cellForRowAt) still expects the array to contain strings so
also update that method:

func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 . . .

 if cell == nil {
 cell = UITableViewCell(style: .subtitle, // change
 reuseIdentifier: cellIdentifier)
 }

 let searchResult = searchResults[indexPath.row]
 cell.textLabel!.text = searchResult.name
 cell.detailTextLabel!.text = searchResult.artistName
 return cell
}

Instead of a regular table view cell this now uses a “subtitle” cell style. You put the
contents of the artistName property into the detail (subtitle) text label.

➤ Run the app; it should look like this:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 26

Fake results in a subtitle cell

Nothing found
When you add searching capability to your apps, you’ll usually have to handle the
following situations:

1. The user did not perform a search yet.

2. The user performed the search and received one or more results. That’s what
happens in the current version of the app: for every search you’ll get back a
handful of SearchResult objects.

3. The user performed the search and there were no results. It’s usually a good
idea to explicitly tell the user there were no results. If you display nothing at all
the user may wonder whether the search was actually performed or not.

Even though the app doesn’t do any actual searching yet – everything is fake –
there is no reason why you cannot fake the latter situation as well.

For the sake of good taste, the app will return 0 results when the user searches for
“justin bieber”, just so you know the app can handle this kind of situation.

➤ In searchBarSearchButtonClicked(), put the following if-statement around the
for in loop:

if searchBar.text! != "justin bieber" {
 for i in 0...2 {
 . . .
 }
}

The change here is pretty simple. You have added an if-statement that compares
the search text to "justin bieber". Only if there is no match will this create the
SearchResult objects and add them to the array.

➤ Run the app and do a search for “justin bieber” (all lowercase). The table should
stay empty.

You can improve the user experience by showing the text “(Nothing found)”
instead, so the user knows beyond a doubt that there were no search results.

➤ Change the bottom part of tableView(cellForRowAt) to:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 27

if searchResults.count == 0 {
 cell.textLabel!.text = "(Nothing found)"
 cell.detailTextLabel!.text = ""
} else {
 let searchResult = searchResults[indexPath.row]
 cell.textLabel!.text = searchResult.name
 cell.detailTextLabel!.text = searchResult.artistName
}
return cell

That alone is not enough. When there is nothing in the array, searchResults.count
is 0, right? But that also means the data source’s numberOfRowsInSection will return
0 and the table view stays empty – this “Nothing found” row will never show up.

➤ Change tableView(numberOfRowsInSection) to:

func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 if searchResults.count == 0 {
 return 1
 } else {
 return searchResults.count
 }
}

If there are no results this returns 1, for the row with the text “(Nothing Found)”.
This works because both numberOfRowsInSection and cellForRowAt check for this
special situation.

➤ Try it out:

One can hope…

Unfortunately, the text “Nothing found” also appears when the user did not actually
search for anything yet. That’s a little silly.

The problem is that you have no way to distinguish between “not searched yet” and
“nothing found”. Right now, you can only tell whether the searchResults array is
empty but not what caused this.

Exercise. How would you solve this little problem?

There are two obvious solutions that come to mind:

• Make searchResults into an optional. If it is nil, i.e. it has no value, then the

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 28

user hasn’t searched yet. That’s different from the case where the user did
search and no matches were found.

• Use a separate boolean variable to keep track of this.

It may be tempting to choose the optional, but it’s best to avoid optionals if you
can. They make the logic more complex, they can cause the app to crash if you
don’t unwrap them properly, and they require if let statements everywhere.
Optionals certainly have their uses but here they are not really necessary.

So we’ll opt for the boolean. (But feel free to come back and try the optional as
well, and compare the differences. It’ll be a great exercise!)

➤ Add the new instance variable:

var hasSearched = false

➤ In the search bar delegate method, set this variable to true. It doesn’t really
matter where you do this, as long as it happens before the table view is reloaded.

func searchBarSearchButtonClicked(_ searchBar: UISearchBar) {
 . . .
 hasSearched = true
 tableView.reloadData()
}

➤ And finally, change tableView(numberOfRowsInSection) to look at the value of this
new variable:

func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 if !hasSearched {
 return 0
 } else if searchResults.count == 0 {
 return 1
 } else {
 return searchResults.count
 }
}

Now the table view remains empty until you first search for something. Try it out!
(Later on in the tutorial you’ll see a much better way to handle this using an enum –
and it will blow your mind!)

One more thing, if you currently tap on a row it will become selected and stays
selected.

➤ To fix that, add the following methods inside the UITableViewDelegate extension:

func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 tableView.deselectRow(at: indexPath, animated: true)
}

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 29

func tableView(_ tableView: UITableView,
 willSelectRowAt indexPath: IndexPath) -> IndexPath? {
 if searchResults.count == 0 {
 return nil
 } else {
 return indexPath
 }
}

The tableView(didSelectRowAt) method will simply deselect the row with an
animation, while willSelectRowAt makes sure that you can only select rows with
actual search results.

If you tap on the (Nothing Found) row now you will notice that it does not turn gray
at all. (Actually, the row may still turn gray if you press down on it for a short while.
That happens because you did not change the selectionStyle property of the cell.
You’ll fix that in the next section.)

➤ This is a good time to commit the app. Go to Source Control → Commit (or
press the ⌘+Option+C keyboard shortcut).

Make sure all the files are selected, review your changes, and type a good commit
message – something like “Add a search bar and table view. The search puts fake
results in the table for now.” Press the Commit button to finish.

Note: It is customary to write commit messages in the present tense. That’s
why I wrote “Add a search bar” instead of “Added a search bar”.

If you ever want to look back through your commit history, you can either do that
from the Source Control → History window or from the Version editor, pictured
below:

Viewing revisions in the Version editor

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 30

You switch to the Version editor with the button in the toolbar at the top of the
Xcode window.

In the screenshot above, the current version is shown on the left and the previous
version on the right. You can switch between versions with the bar at the bottom.
The Version editor is a very handy tool for viewing the history of changes in your
source files.

The app isn’t very impressive yet but you’ve laid the foundation for what is to
come. You have a search bar and know how to take action when the user presses
the Search button. The app also has a simple data model that consists of an array
with SearchResult objects, and it can display these search results in a table view.

You can find the project files for the first part of this app under 01 - Search Bar in
the tutorial’s Source Code folder.

Before you make the app do a real search on the iTunes store, first let’s make the
table view look a little better. Appearance does matter!

Custom table cells and nibs
In the previous tutorials you used prototype cells to create your own table view cell
layouts. That works great but there’s another way: in this tutorial you’ll create a
“nib” file with the design for the cell and load your table view cells from that. The
principle is very similar to prototype cells.

A nib, also called a xib, is very much like a storyboard except that it only contains
the design for a single thing. That thing can be a view controller but it can also be
an individual view or table view cell. A nib is really nothing more than a container
for a “freeze dried” object that you can edit in Interface Builder.

In practice, many apps consist of a combination of nibs and storyboard files, so it’s
good to know how to work with both.

This is what you’re going to make in this section:

The app with better looks

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 31

The app still uses the same fake data, but you’ll make it look a bit better.

➤ First, add the contents of the Images folder from this tutorial’s resources into
the project’s asset catalog, Assets.xcassets.

Imported images in the asset catalog

Each of the images comes in two versions: 2x and 3x. There are no low-resolution
1x devices that can run iOS 10. Even though you’ll also make this app run on iPads,
iOS 10 only supports iPads with a 2x Retina screen. So there’s no point in including
1x images.

➤ Add a new file to the project. Choose the Empty template from the User
Interface category (scroll down in the template chooser). This will create a new
nib without anything in it.

Adding an empty nib to the project

➤ Click Next and save the new file as SearchResultCell.

This adds a nib with no contents to the project. Open SearchResultCell.xib and
you will see an empty canvas.

Xib or nib

I’ve been calling it a nib but the file extension is .xib. So what is the
difference? In practice these terms are used interchangeably. Technically
speaking, a xib file is compiled into a nib file that is put into your application
bundle. The term nib mostly stuck for historical reasons (it stands for NeXT

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 32

Interface Builder, after the old NeXT computers from the 1990s).

You can consider the terms “xib file” and “nib file” to be equivalent. The
preferred term seems to be nib, so that is what I will be using from now on.
(This won’t be the last time computer terminology is confusing, ambiguous or
inconsistent. The world of programming is full of colorful slang.)

➤ Use the View as: panel to switch to iPhone SE dimensions. As usual, we’ll
design for this device first and then use Auto Layout to make the user interface
adapt to the larger iPhone models.

➤ From the Object Library, drag a new Table View Cell into the canvas:

The Table View Cell in the Object Library

➤ Select the new Table View Cell and go to the Size inspector. Type 80 in the
Height field (not Row Height). Make sure Width is 320, the width of the iPhone SE
screen.

The cell now looks like this:

An empty table view cell

➤ Drag an Image View and two Labels into the cell, like this:

The design of the cell

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 33

➤ The Image View is positioned at X:15, Y:10, Width:60, Height:60.

➤ The Name label is at X:90, Y:15, Width:222, Height:22. Its font is System 18.

➤ The Artist Name label is at X:90, Y:44, Width:222, Height:18. Font is System
15 and Color is black with 50% opacity.

As you can see, editing a nib is just like editing a storyboard. The difference is that
the canvas is a lot smaller, but that’s because you’re only editing a single table view
cell, not an entire view controller.

➤ The Table View Cell itself needs to have a reuse identifier. You can set this in the
Attributes inspector to the value SearchResultCell.

The image view will hold the artwork for the found item, such as an album cover,
book cover, or an app icon. It may take a few seconds for these images to be
loaded, so until then it’s a good idea to show a placeholder image. That placeholder
is part of the image files you just added to the project.

➤ Select the Image View. In the Attributes inspector, set Image to
Placeholder.

The cell design now looks like this:

The cell design with placeholder image

You’re not done yet. The design for the cell is only 320 points wide but the iPhone
6s, 7, and Plus are wider than that. The cell itself will resize to accommodate those
larger screens but the labels won’t, potentially causing their text to be cut off. You’ll
have to add some Auto Layout constraints to make the labels resize along with the
cell.

➤ Select the Name label and open the Pin menu. Uncheck Constrain to margins
and select the top, left, and right pins (but not the bottom one):

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 34

The constraints for the Name label

This time, leave Update Frames set to None. When enabled, the Update Frames
option will move and resize the label according to the constraints you’ve set on it.
That will not do the correct thing in this case (if you’re curious, try it out and see
what happens).

➤ Click Add 3 Constraints to finish. The nib now looks like this:

The Name label has insufficient constraints

The orange rectangle indicates that something’s not right with the constraints from
the Name label. Apparently the width of the label is incorrect; the dotted box over
on the right is what Auto Layout thinks should be the size and position for the label
according to the constraints.

Note: If you had set Update Frames to “Items of New Constraints”, then
Interface Builder would have moved the label to where the dotted box is.
That’s why you left it set to None because you didn’t want it to do that here.

Auto Layout is entitled to its opinion, of course, but over in the corner is not where
you want the label to be. Its current position is just fine, so you’ll have to add a
couple more constraints to tell Auto Layout that this is really what you intended.

The solution is to pin the Image View. Remember that each view always needs to
have enough constraints to uniquely determine its position and size. The Name
label is connected to the Image View on the left, but the Image View doesn’t have
any constraints of its own.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 35

➤ Select the Image View and pin it to the top and left sides of the cell. Also give
it Width and Height constraints so that its size is always fixed to 60 by 60 points:

The constraints for the Image View

The orange box from the Name label should have disappeared. If you select this
label, it should show three blue bars and nothing in orange.

➤ Finally, pin the Artist Name label to the left, right, and bottom.

That concludes the design for this cell. Now you have to tell the app to use this nib.

➤ In SearchViewController.swift, add these lines to the bottom of
viewDidLoad():

let cellNib = UINib(nibName: "SearchResultCell", bundle: nil)
tableView.register(cellNib, forCellReuseIdentifier: "SearchResultCell")

The UINib class is used to load nibs. Here you tell it to load the nib you just created
(note that you don’t specify the .xib file extension). Then you ask the table view to
register this nib for the reuse identifier “SearchResultCell”.

From now on, when you call dequeueReusableCell(withIdentifier) for the identifier
“SearchResultCell”, UITableView will automatically make a new cell from the nib – or
reuse an existing cell if one is available, of course. And that’s all you need to do.

➤ Change tableView(cellForRowAt) to:

func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(
 withIdentifier: "SearchResultCell", for: indexPath)

 if searchResults.count == 0 {
 . . .
 } else {
 . . .
 }
 return cell
}

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 36

You were able to replace this chunk of code,

let cellIdentifier = "SearchResultCell"

var cell: UITableViewCell! = tableView.dequeueReusableCell(
 withIdentifier: cellIdentifier)
if cell == nil {
 cell = UITableViewCell(style: .subtitle,
 reuseIdentifier: cellIdentifier)
}

with just one statement. It’s almost exactly like using prototype cells, except that
you have to create your own nib object and you need to register it with the table
view beforehand.

Note: The call to dequeueReusableCell(withIdentifier) now takes a second
parameter, for:, that takes an IndexPath value. This variant of the dequeue
method lets the table view be a bit smarter, but it only works when you have
registered a nib with the table view (or when you use a prototype cell).

➤ Run the app and do a (fake) search. Yikes, the app crashes.

Exercise. Any ideas why?

Answer: Because you made your own cell design, you should no longer use the
textLabel and detailTextLabel properties of UITableViewCell.

Every table view cell – even a custom cell that you load from a nib – has a few
labels and an image view of its own, but you should only employ these when you’re
using one of the standard cell styles: .default, .subtitle, etc. If you use them on
custom cells then these labels get in the way of your own labels.

So here you shouldn’t use textLabel and detailTextLabel to put text into the cell,
but make your own properties for your own labels.

Where do you put these properties? In a new class, of course. You’re going to make
a new class named SearchResultCell that extends UITableViewCell and that has
properties (and logic) for displaying the search results in this app.

➤ Add a new file to the project using the Cocoa Touch Class template. Name it
SearchResultCell and make it a subclass of UITableViewCell. (“Also create XIB
file” should be unchecked as you already have one.)

This creates the Swift file to accompany the nib file you created earlier.

➤ Open SearchResultCell.xib and select the Table View Cell. (Make sure you
select the actual Table View Cell object, not its Content View.)

➤ In the Identity inspector, change its class from “UITableViewCell” to
SearchResultCell.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 37

You do this to tell the nib that the top-level view object it contains is no longer a
UITableViewCell but your own SearchResultCell subclass. From now on, whenever
you call dequeueReusableCell(…), the table view will return an object of type
SearchResultCell.

➤ Add the following outlet properties to SearchResultCell.swift:

@IBOutlet weak var nameLabel: UILabel!
@IBOutlet weak var artistNameLabel: UILabel!
@IBOutlet weak var artworkImageView: UIImageView!

➤ Hook these outlets up to the respective labels and image view in the nib. It is
easiest to do this from the Connections inspector for SearchResultCell:

Connect the labels and image view to Search Result Cell

You can also open the Assistant editor and Ctrl-drag from the labels and image view
to their respective outlet definitions. (If you’ve used nib files before you might be
tempted to connect the outlets to File’s Owner but that won’t work in this case;
they must be connected to the table view cell.)

Now that this is all set up, you can tell the SearchViewController to use these new
SearchResultCell objects.

➤ In SearchViewController.swift, change “cellForRowAt” to:

func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 let cell = tableView.dequeueReusableCell(withIdentifier:
 "SearchResultCell", for: indexPath) as! SearchResultCell

 if searchResults.count == 0 {
 cell.nameLabel.text = "(Nothing found)"
 cell.artistNameLabel.text = ""
 } else {
 let searchResult = searchResults[indexPath.row]
 cell.nameLabel.text = searchResult.name
 cell.artistNameLabel.text = searchResult.artistName
 }
 return cell
}

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 38

Notice the change in the first line. Previously this returned a UITableViewCell object
but now that you’ve changed the class name in the nib, you’re guaranteed to
always receive a SearchResultCell. (You still need to cast it with as!, though.)

Given that cell, you can put the name and artist name from the search result into
the proper labels. You’re now using the cell’s nameLabel and artistNameLabel outlets
instead of textLabel and detailTextLabel. You also no longer need to write ! to
unwrap because the outlets are implicitly unwrapped optionals, not true optionals.

➤ Run the app and… Hmm, that doesn’t look too good:

Uh oh…

The problem is that these rows aren’t 80 points high. The table view isn’t smart
enough to figure out that these custom cells need to be higher. Fortunately this is
easily fixed.

➤ Add the following line to viewDidLoad():

tableView.rowHeight = 80

➤ Run the app again and it should look something like this:

Much better!

There are a few more things to improve. Notice that you’ve been using the string
literal "SearchResultCell" in a few different places? It’s generally better to create a
constant for such occasions.

Suppose you – or one of your co-workers – renamed the reuse identifier in one
place (for whatever reason). Then you’d also have to remember to change it in all
the other places where "SearchResultCell" is used.

It’s better to limit those changes to one single spot by using a symbolic name

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 39

instead.

➤ Add the following to SearchViewController.swift, somewhere inside the class:

struct TableViewCellIdentifiers {
 static let searchResultCell = "SearchResultCell"
}

This defines a new struct, TableViewCellIdentifiers, containing a constant named
searchResultCell with the value "SearchResultCell".

Should you want to change this value, then you only have to do it here and any
code that uses TableViewCellIdentifiers.searchResultCell will be automatically
updated.

There is another reason for using a symbolic name rather than the actual value: it
gives extra meaning. Just seeing the text "SearchResultCell" says less about its
intended purpose than the symbol TableViewCellIdentifiers.searchResultCell.

Note: Putting symbolic constants as static let members inside a struct is a
common trick in Swift. A static value can be used without an instance so you
don’t need to instantiate TableViewCellIdentifiers before you can use it (like
you would need to do with a class).

It’s allowed in Swift to place a struct inside a class, which permits different
classes to all have their own struct TableViewCellIdentifiers. This wouldn’t
work if you placed the struct outside the class – then you’d have more than
one struct with the same name in the global namespace, which is not allowed.

➤ Anywhere else in SearchViewController.swift, replace the string
"SearchResultCell" with TableViewCellIdentifiers.searchResultCell.

For example, viewDidLoad() will now look like this:

override func viewDidLoad() {
 super.viewDidLoad()
 tableView.contentInset = UIEdgeInsets(top: 64, left: 0, bottom: 0,
 right: 0)
 let cellNib = UINib(nibName:
 TableViewCellIdentifiers.searchResultCell, bundle: nil)
 tableView.register(cellNib, forCellReuseIdentifier:
 TableViewCellIdentifiers.searchResultCell)
 tableView.rowHeight = 80
}

The other change is in tableView(cellForRowAt).

➤ Run the app to make sure everything still works.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 40

A new “Nothing Found” cell
Remember our friend Justin Bieber? Searching for him now looks like this:

The Nothing Found label now draws like this

That’s not very pretty. It will be nicer if you gave this its own cell. That’s not too
hard: you can simply make another nib for it.

➤ Add another nib file to the project. Again this will be an Empty nib. Name it
NothingFoundCell.xib.

➤ Drag a new Table View Cell into the canvas. Set its Width to 320, its Height to
80 and give it the reuse identifier NothingFoundCell.

➤ Drag a Label into the cell and give it the text Nothing Found. Make the text
color 50% opaque black and the font System 15.

➤ Use Editor → Size to Fit Content to make the label fit the text exactly (you
may have to deselect and select the label again to enable this menu option).

➤ Center the label in the cell, using the blue guides to snap it exactly to the center.

It should look like this:

Design of the Nothing Found cell

In order to keep the text centered on all devices, select the label and open the
Align menu:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 41

Creating the alignment constraints

➤ Choose Horizontally in Container and Vertically in Container. Set Update
Frames to Items of New Constraints.

The constraints should look like this:

The constraints for the label

One more thing to fix. Remember that in “willSelectRowAt” you return nil if there
are no search results to prevent the row from being selected? Well, if you are
persistent enough you can still make the row appear gray as if it were selected.

For some reason, UIKit draws the selected background if you press down on the cell
for long enough, even though this doesn’t count as a real selection. To prevent this,
you have to tell the cell not to use a selection color.

➤ Select the cell itself. In the Attributes inspector, set Selection to None. Now
tapping or holding down on the Nothing Found row will no longer show any sort of
selection.

You don’t have to make a UITableViewCell subclass for this cell because there is no
text to change or properties to set. All you need to do is register this nib with the
table view.

➤ Add to the struct in SearchViewController.swift:

struct TableViewCellIdentifiers {
 static let searchResultCell = "SearchResultCell"
 static let nothingFoundCell = "NothingFoundCell"
}

➤ Add these lines to viewDidLoad(), below the other code that registers the nib:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 42

cellNib = UINib(nibName: TableViewCellIdentifiers.nothingFoundCell,
 bundle: nil)
tableView.register(cellNib,
 forCellReuseIdentifier: TableViewCellIdentifiers.nothingFoundCell)

This also requires you to change “let cellNib” into var because you’re re-using the
cellNib local variable.

➤ And finally, change tableView(cellForRowAt) to:

func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 if searchResults.count == 0 {
 return tableView.dequeueReusableCell(
 withIdentifier: TableViewCellIdentifiers.nothingFoundCell,
 for: indexPath)

 } else {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: TableViewCellIdentifiers.searchResultCell,
 for: indexPath) as! SearchResultCell

 let searchResult = searchResults[indexPath.row]
 cell.nameLabel.text = searchResult.name
 cell.artistNameLabel.text = searchResult.artistName
 return cell
 }
}

The logic here has been restructured a little. You only make a SearchResultCell if
there are actually any results. If the array is empty, you’ll simply dequeue the cell
for the nothingFoundCell identifier and return it. There is nothing to configure for
that cell so this one-liner will do.

➤ Run the app. The search results for Justin Bieber now look like this:

The new Nothing Found cell in action

Also try it out on the larger iPhones. The label should always be centered in the cell.

Sweet. It has been a while since your last commit, so this seems like a good time to
secure your work.

➤ Commit the changes to the repository. I used the message “Use custom cells for

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 43

search results.”

Changing the look of the app
As I write this, it’s gray and rainy outside. The app itself also looks quite gray and
dull. Let’s cheer it up a little by giving it more vibrant colors.

➤ Add the following method to AppDelegate.swift:

func customizeAppearance() {
 let barTintColor = UIColor(red: 20/255, green: 160/255, blue: 160/255,
 alpha: 1)
 UISearchBar.appearance().barTintColor = barTintColor

 window!.tintColor = UIColor(red: 10/255, green: 80/255, blue: 80/255,
 alpha: 1)
}

This changes the appearance of the UISearchBar – in fact, it changes all search bars
in the application. You only have one, but if you had several then this changes the
whole lot in one swoop.

The UIColor(red, green, blue, alpha) method makes a new UIColor object based
on the RGB and alpha color components that you specify.

Many painting programs let you pick RGB values going from 0 to 255 so that’s the
range of color values that many programmers are accustomed to thinking in. The
UIColor initializer, however, accepts values between 0.0 and 1.0, so you have to
divide these numbers by 255 to scale them down to that range.

➤ Call this new method from application(didFinishLaunchingWithOptions):

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey: Any]?) -> Bool {
 customizeAppearance()
 return true
}

➤ Run the app and notice the difference:

The search bar in the new teal-colored theme

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 44

The search bar is bluish-green, but still slightly translucent. The overall tint color is
now a dark shade of green instead of the default blue. (You can currently only see
the tint color in the text field’s cursor but it will become more obvious later on.)

The role of App Delegate
The poor AppDelegate is often abused. People give it too many responsibilities.
Really, there isn’t that much for the app delegate to do.

It gets a number of callbacks about the state of the app – whether the app is about
to be closed, for example – and handling those events should be its primary
responsibility. The app delegate also owns the main window and the top-level view
controller. Other than that, it shouldn’t do much.

Some developers use the app delegate as their data model. That is just bad design.
You should really have a separate class for that (or several). Others make the app
delegate their main control hub. Wrong again! Put that stuff in your top-level view
controller.

If you ever see the following type of thing in someone’s source code, it’s a pretty
good indication that the application delegate is being used the wrong way:

let appDelegate = UIApplication.shared.delegate as! AppDelegate
appDelegate.someProperty = . . .

This happens when an object wants to get something from the app delegate. It
works but it’s not good architecture.

In my opinion, it’s better to design your code the other way around: the app
delegate may do a certain amount of initialization, but then it gives any data model
objects to the root view controller, and hands over control. The root view controller
passes these data model objects to any other controller that needs them, and so
on.

This is also called dependency injection. I described this principle in the section
“Passing around the context” in the MyLocations tutorial.

Currently, tapping a row gives it a gray selection. This doesn’t go so well with the
teal-colored theme so you’ll give the row selection the same bluish-green tint.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 45

That’s very easy to do because all table view cells have a selectedBackgroundView
property. The view from that property is placed on top of the cell’s background, but
below the other content, when the cell is selected.

➤ Add the following code to awakeFromNib() in SearchResultCell.swift:

override func awakeFromNib() {
 super.awakeFromNib()
 let selectedView = UIView(frame: CGRect.zero)
 selectedView.backgroundColor = UIColor(red: 20/255, green: 160/255,
 blue: 160/255, alpha: 0.5)
 selectedBackgroundView = selectedView
}

The awakeFromNib() method is called after this cell object has been loaded from the
nib but before the cell is added to the table view. You can use this method to do
additional work to prepare the object for use. That’s perfect for creating the view
with the selection color.

Why don’t you do that in an init method, such as init?(coder)? To be fair, in this
case you could. But it’s worth noting that awakeFromNib() is called some time after
init?(coder) and also after the objects from the nib have been connected to their
outlets.

For example, in init?(coder) the nameLabel and artistNameLabel outlets will still be
nil but in awakeFromNib() they will be properly hooked up to their UILabel objects.
So if you wanted to do something with those outlets in code, you’d need to do that
in awakeFromNib(), not in init?(coder).

That’s why awakeFromNib() is the ideal place for this kind of thing. (It’s similar to
what you use viewDidLoad() for in a view controller.)

Don’t forget to first call super.awakeFromNib(), which is required. If you forget, then
the superclass UITableViewCell – or any of the other superclasses – may not get a
chance to initialize themselves.

Tip: It’s always a good idea to call super.methodName(…) in methods that you’re
overriding – such as viewDidLoad(), viewWillAppear(), awakeFromNib(), and so
on – unless the documentation says otherwise.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 46

When you run the app, it should look like this:

The selection color is now green

While you’re at it, you might as well give the app an icon.

➤ Open the asset catalog (Assets.xcassets) and select the AppIcon group.

Later in this tutorial you will convert this app to run on the iPad, so you also need to
add the icons for the iPad version.

➤ Open the Attributes inspector and for iPad choose iOS 7.0 and Later:

Enabling iPad icons

This adds nine new slots for the iPad icons.

➤ Drag the images from the Icon folder from this tutorial’s resources into the slots.

Keep in mind that for the 2x slots you need to use the image with twice the size in
pixels. For example, you drag the Icon-152.png file into iPad App 76pt, 2x. For
3x you need to multiply the image size by 3.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 47

All the icons in the asset catalog

➤ Run the app and notice that it has a nice icon:

The app icon

One final user interface tweak I’d like to make is that the keyboard will be
immediately visible when you start the app so the user can start typing right away.

➤ Add the following line to viewDidLoad() in SearchViewController.swift:

searchBar.becomeFirstResponder()

This is the inverse of resignFirstResponder() that you used earlier. Where “resign”
got rid of the keyboard, becomeFirstResponder() will show the keyboard and
anything you type will end up in the search bar.

➤ Try it out and commit your changes. You styled the search bar and added the
icon.

Tagging the commits
If you look through the various commits you’ve made so far, you’ll notice a bunch of
strange numbers, such as “d8e3ebf”:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 48

The commits are listed in the history window but have weird numbers

Those are internal numbers that Git uses to uniquely identify commits (known as
the “hash”). Such numbers aren’t very nice for us humans so Git also allows you to
“tag” a certain commit with a more friendly label.

Unfortunately, at the time of writing, Xcode does not support this tag command.
You can do it from a Terminal window, though.

➤ Open the Terminal (from Applications/Utilities).

➤ Type “cd ” (with a space behind it) and from Finder drag the folder that contains
the StoreSearch project into the Terminal. Then press Enter. This will make the
Terminal go to your project directory.

➤ Type the command git tag v0.1

Doing git tag from the Terminal

Later you can refer to this particular commit as “v0.1”.

Note: It’s possible you may get a popup saying you first need to install the
command line developer tools. Press Install to go ahead. If typing git in
Terminal gives you a “command not found” error, then type the command
xcode-select --install first.

It’s a bit of a shame that Xcode doesn’t show these Git tags, as they’re really
handy, but third-party tools such as Tower do.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 49

Viewing the Git repository with Tower

Xcode works quite well with Git but it only supports the basic features. To take full
advantage of Git you’ll probably need to learn how to use the Terminal or get a tool
such as Tower (git-tower.com, 30-day free trial) or SourceTree (free on the Mac App
Store).

You can find the project files for the app up to this point under 02 - Custom Table
Cells in the tutorial’s Source Code folder.

The debugger
Xcode has a built-in debugger. Unfortunately, a debugger doesn’t actually get the
bugs out of your programs; it just lets them crash in slow motion so you can get a
better idea of what is wrong.

Like a police detective, the debugger lets you dig through the evidence after the
damage has been done, in order to find the scoundrel who did it.

Let’s introduce a bug into the app so that it crashes. Knowing what to do when your
app crashes is very important.

Thanks to the debugger, you don’t have to stumble in the dark with no idea what
just happened. Instead, you can use it to quickly pinpoint what went wrong and
where. Once you know those two things, figuring out why it went wrong becomes a
lot easier.

➤ Change SearchViewController.swift’s numberOfRowsInSection method to:

func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 if !hasSearched {
 . . .
 } else if searchResults.count == 0 {
 . . .
 } else {

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 50

 return searchResults.count + 1 // only this line is different
 }
}

➤ Now run the app and search for something. The app crashes and the Xcode
window changes to something like this:

The Xcode debugger appears when the app crashes

The crash is: Thread 1: EXC_BAD_INSTRUCTION. Sounds nasty!

There are different types of crashes, with wonderful names such as SIGABRT,
EXC_BAD_ACCESS, and the one you have here, EXC_BAD_INSTRUCTION.

This is actually a pretty good crash to have – as far as that’s possible anyway. It
means your app died in a controlled fashion. You did something you were not
supposed to but Swift caught this and politely terminated the app with an error
message.

That error message is an important clue and you can find it in Xcode’s Debug area:

fatal error: Index out of range

According to the error message, the index that was used to access some array is
larger than the number of items inside the array. In other words, the index is “out
of range”. That is a common error with arrays and you’re likely to make this
mistake more than once in your programming career.

Now that you know what went wrong, the big question is: where did it go wrong?
You may have many calls to array[index] in your app, and you don’t want to have
to dig through the entire code to find the culprit.

Thankfully, you have the debugger to help you out. In the source code editor it

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 51

already points at the offending line:

The debugger points at the line that crashed

Important: This line isn’t necessarily the cause of the crash – after all, you didn’t
change anything in this method – but it is where the crash happens. From here you
can find your way backwards to the cause.

The array is searchResults and the index is given by indexPath.row. It would be
great to get some insight into the row number but unfortunately there is no easy
way to see the value of indexPath.row in the debugger.

You’ll have to resort to using the debugger’s command line interface, like a hacker
whiz kid from the movies.

➤ Behind the (lldb) prompt, type p indexPath.row and press enter:

Printing the value of indexPath.row

The output should be something like:

(Int) $R0 = 3

This means the value of indexPath.row is 3 and the type is Int. (You can ignore the
$R0 bit.)

Let’s also find out how many items are in the array.

➤ Type p searchResults and press enter:

Printing the searchResults array

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 52

The output shows an array with three items.

You can now reason about the problem: the table view is asking for a cell for the
fourth row (i.e. the one at index 3) but apparently there are only three rows in the
data model (rows 0 through 2).

The table view knows how many rows there are from the value that is returned
from numberOfRowsInSection, so maybe that method is returning the wrong number
of rows. That is indeed the cause, of course, as you intentionally introduced the bug
in that method.

I hope this illustrates how you should deal with crashes: first find out where the
crash happens and what the actual error is, then reason your way backwards until
you find the cause.

➤ Restore numberOfRowsInSection to what it was and then add a new outlet
property to SearchViewController.swift:

@IBOutlet weak var searchBar2: UISearchBar!

➤ Open the storyboard and Ctrl-drag from Search View Controller to the Search
Bar. Select searchBar2 from the popup.

Now the search bar is also connected to this new searchBar2 outlet. (It’s perfectly
fine for an object to be connected to more than one outlet at a time.)

➤ Remove the searchBar2 outlet property from SearchViewController.swift.

This is a dirty trick on my part to make the app crash. The storyboard contains a
connection to a property that no longer exists. (If you think this a convoluted
example, then wait until you make this mistake in one of your own apps. It
happens more often than you may think!)

➤ Run the app and it immediately crashes. The crash is “Thread 1: signal
SIGABRT”.

The Debug pane says:

*** Terminating app due to uncaught exception 'NSUnknownKeyException',
reason: '[<StoreSearch.SearchViewController 0x7ff47a6242c0>
setValue:forUndefinedKey:]: this class is not key value coding-compliant
for the key searchBar2.'
*** First throw call stack:
(
 0 CoreFoundation 0x00000001099a63f5 __exceptionPreprocess + 165
 1 libobjc.A.dylib 0x000000010b4d4bb7 objc_exception_throw + 45
 . . .

The first part of this message is very important: it tells you that the app was
terminated because of an “NSUnknownKeyException”. On some platforms
exceptions are a commonly used error handling mechanism, but on iOS this is
always a fatal error and the app is forced to halt.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 53

The bit that should pique your interest is this:

this class is not key value coding-compliant for the key searchBar2

Hmm, that is a bit cryptic. It does mention searchBar2 but what does “key value-
coding compliant” mean? I’ve seen this error enough times to know what is wrong
but if you’re new to this game a message like that isn’t very enlightening.

So let’s see where Xcode thinks the crash happened:

Crash in AppDelegate?

That also isn’t very useful. Xcode says the app crashed in AppDelegate, but that’s
not really true.

Xcode goes through the call stack until it finds a method that it has source code
for and that’s the one it shows. The call stack is the list of methods that have been
called most recently. You can see it on the left of the Debugger window.

➤ Click the left-most icon at the bottom of the Debug navigator to see more info:

A more detailed call stack

The method at the top, __pthread_kill, was the last method that was called (it’s
actually a function, not a method). It got called from pthread_kill, which was
called from abort, which was called from abort_message, and so on, all the way back
to the main function, which is the entry point of the app and the very first function
that was called when the app started.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 54

All of the methods and functions that are listed in this call stack are from system
libraries, which is why they are grayed out. If you click on one, you’ll get a bunch of
unintelligible assembly code:

You cannot look inside the source code of system libraries

So clearly this approach is not getting you anywhere. However, there is another
thing you can try and that is to set an Exception Breakpoint.

A breakpoint is a special marker in your code that will pause the app and jump
into the debugger.

When your app hits a breakpoint, the app will pause at that exact spot. Then you
can use the debugger to step line-by-line through your code in order to run it in
slow motion. That can be a handy tool if you really cannot figure out why
something crashes.

You’re not going to step through code in this tutorial, but you can read more about
it in the Xcode Overview guide, in the section Using the Debugger. You can find it in
the iOS Developer Library at developer.apple.com.

You are going to set a special breakpoint that is triggered whenever a fatal
exception occurs. This will halt the program just as it is about to crash, which
should give you more insight into what is going on.

➤ Switch to the Breakpoint navigator (the arrow-shaped button to the right of
the Debug navigator) and click the + button at the bottom to add an Exception
Breakpoint:

Adding an Exception Breakpoint

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 55

This will put a new breakpoint in the list:

After adding the Exception Breakpoint

➤ Now run the app again. It will still crash, but Xcode shows a lot more info:

Xcode now halts the app at the point the exception occurs

There are many more methods in the call stack now. Let’s see if we can find some
clues as to what is going on.

What catches my attention is the call to something called [UIViewController
_loadViewFromNibNamed:bundle:]. That’s a pretty good hint that this has error
occurs when loading a nib file, or the storyboard in this case.

Using these hints and clues, and the somewhat cryptic error message that you got
without the Exception Breakpoint, you can usually figure out what is making your
app crash.

In this case we’ve established that the app crashes when it’s loading the
storyboard, and the error message mentioned “searchBar2”. Put two and two
together and you’ve got your answer.

A quick peek in the source code confirms that the searchBar2 outlet no longer exists
on the view controller but the storyboard still refers to it.

➤ Open the storyboard and in the Connections inspector disconnect Search View
Controller from searchBar2 to fix the crash. That’s another bug squashed!

Note: Enabling the Exception Breakpoint means that you no longer get a
useful error message in the Debug pane if the app crashes (because the
breakpoint stops the app just before the exception happens). If sometime later
during development your app crashes on another bug, you may want to

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 56

disable this breakpoint again to actually see the error message. You can do
that from the Breakpoint navigator.

To summarize:

• If your app crashes with EXC_BAD_INSTRUCTION or SIGABRT, the Xcode
debugger will often show you an error message and where in the code the crash
happens.

• If Xcode thinks the crash happened on AppDelegate (not very useful!), enable
the Exception Breakpoint to get more info.

• If the app crashes with a SIGABRT but there is no error message, then disable
the Exception Breakpoint and make the app crash again. (Alternatively, click the
Continue program execution button from the debugger toolbar a few times.
That will also show the error message.)

• An EXC_BAD_ACCESS error usually means something went wrong with your
memory management. An object may have been “released” one time too many
or not “retained” enough. With Swift these problems are mostly a thing of the
past because the compiler will usually make sure to do the right thing. However,
it’s still possible to mess up if you’re talking to Objective-C code or low-level
APIs.

• EXC_BREAKPOINT is not an error. The app has stopped on a breakpoint, the blue
arrow pointing at the line where the app is paused. You set breakpoints to pause
your app at specific places in the code, so you can examine the state of the app
inside the debugger. The “Continue program execution” button resumes the app.

This should help you get to the bottom of most of your crashes!

The build log
If you’re wondering what Xcode actually does when it builds your app, then take a
peek at the Log navigator. It’s the last icon in the navigator pane.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 57

The Log navigator keeps track of your builds and debug sessions so you can look
back at what happened. It even remembers the debug output of previous runs of
the app.

Make sure All Messages is selected. To get more information about a particular log
item, hover over it and click the little icon that appears on the right. The line will
expand and you’ll see exactly which commands Xcode executed and what the result
was.

Should you run into some weird compilation problem, then this is the place for
troubleshooting. Besides, it’s interesting to see what Xcode is up to from time to
time.

It’s all about the networking
Now that the preliminaries are out of the way, you can finally get to the good stuff:
adding networking to the app.

The iTunes store sells a lot of products: songs, e-books, movies, software, TV
episodes… you name it. You can sign up as an affiliate and earn a commission on
each sale that happens because you recommended a product (even your own
apps!).

To make it easier for affiliates to find products, Apple made available a web service
that queries the iTunes store. You’re not going to sign up as an affiliate for this
tutorial but you will use that free web service to perform searches.

So what is a web service? Your app (also known as the “client”) will send a
message over the network to the iTunes store (the “server”) using the HTTP
protocol.

Because the iPhone can be connected to different types of networks – Wi-Fi or a
cellular network such as LTE, 3G, or GPRS – the app has to “speak” a variety of

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 58

networking protocols to communicate with other computers on the Internet.

The HTTP requests fly over the network

Fortunately you don’t have to worry about any of that as the iPhone firmware will
take care of this complicated subject matter. All you need to know is that you’re
using HTTP.

HTTP is the exact same protocol that your web browser uses when you visit a web
site. In fact, you can play with the iTunes web service using a web browser. That’s a
great way to figure out how this web service works.

This trick won’t work with all web services (some require “POST” requests instead
of “GET” requests) but often you can get quite far with just a web browser.

Open your favorite web browser (I’m using Safari) and go to the following URL:

http://itunes.apple.com/search?term=metallica

The browser should show something like this:

Using the iTunes web service from the Safari web browser

(It’s also possible that the browser downloads these results into a file and puts it
into your Downloads folder. If that happens, open it in a text editor or in Xcode.)

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 59

Those are the search results that the iTunes web service gives you. The data is in a
format named JSON, which stands for JavaScript Object Notation.

JSON is commonly used to send structured data back-and-forth between servers
and clients (i.e. apps). Another data format that you may have heard of is XML, but
that’s quickly going out of favor for JSON.

There are a variety of tools that you can use to make the JSON output more
readable for mere humans. I have a Quick Look plug-in installed that renders JSON
files in a colorful view (www.sagtau.com/quicklookjson.html).

You do need to save the output from the server to a .json file first and then open it
from Finder by pressing the space bar:

A more readable version of the output from the web service

That makes a lot more sense.

Note: You can find extensions for Safari (and most other browsers) that can
prettify JSON directly inside the browser. github.com/rfletcher/safari-json-
formatter is a good one.

There are also dedicated tools on the Mac App Store, for example Visual JSON,
that let you directly perform the request on the server and show the output in
a structured and readable format.

A great online tool is codebeautify.org/jsonviewer.

Browse through the JSON text for a bit. You’ll see that the server gave back a list of
items, some of which are songs; others are audiobooks or music videos.

Each item has a bunch of data associated with it, such as an artist name
(“Metallica”, which is what you searched for), a track name, a genre, a price, a
release date, and so on.

You’ll store some of these fields in the SearchResult class so you can display them
on the screen.

The results you get from the iTunes store might be different from mine. By default
the search returns at most 50 items and since the store has quite a bit more than

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 60

fifty entries that match “metallica”, each time you do the search you may get back
a different set of 50 results.

Also notice that some of these fields, such as artistViewUrl and artworkUrl100 and
previewUrl are links (URLs). For example, from the search result for the song “One”
from the album “…And Justice for All”:

artistViewUrl:
https://itunes.apple.com/us/artist/metallica/id3996865?uo=4

artworkUrl100:
http://is1.mzstatic.com/image/thumb/Music6/v4/81/e1/fb/81e1fbe6-296c-
5942-b410-7589de3af107/source/100x100bb.jpg

previewUrl:
http://a291.phobos.apple.com/us/r30/Music7/v4/f1/9c/78/f19c7823-85d0-
48c7-8641-60fd9fcbf4bc/mzaf_3674189658242762920.plus.aac.p.m4a

Go ahead and copy-paste these URLs in your browser (use the ones from your own
search results).

The artistViewUrl will open an iTunes Preview page for the artist, the
artworkUrl100 loads a thumbnail image, and the previewUrl opens a 30-second
audio preview.

This is how the server tells you about additional resources. The images and so on
are not embedded directly into the search results, but you’re given a URL that
allows you to download them separately. Try some of the other URLs from the JSON
data and see what they do!

Back to the original HTTP request. You made the web browser go to the following
URL:

http://itunes.apple.com/search?term=the search term

You can add other parameters as well to make the search more specific. For
example:

http://itunes.apple.com/search?term=metallica&entity=song

Now the results won’t contain any music videos or podcasts, only songs.

If the search term has a space in it you should replace it with a + sign, as in:

http://itunes.apple.com/search?term=angry+birds&entity=software

This searches for all apps that have something to do with angry birds (you may
have heard of some of them).

The fields in the JSON results for this particular query are slightly different than
before. There is no more previewUrl but there are several screenshot URLs per
entry. Different kinds of products – songs, movies, software – return different types

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 61

of data.

That’s all there is to it. You construct a URL to itunes.apple.com with the search
parameters and then use that URL to make an HTTP request. The server will send
JSON gobbledygook back to the app and you’ll have to somehow turn that into
SearchResult objects and put them in the table view. Let’s get on it!

Synchronous networking = bad
Before you begin, I should point out that there is a bad way to do networking in
your apps and a good way. The bad way is to perform the HTTP requests on your
app’s main thread.

This is simple to program but it will block the user interface and make your app
unresponsive while the networking is taking place. Because it blocks the rest of the
app, this is called synchronous networking.

Unfortunately, many programmers insist on doing networking the wrong way in
their apps, which makes for apps that are slow and prone to crashing.

I will begin by demonstrating the easy-but-bad way, just to show you how not to do
this. It’s important that you realize the consequences of synchronous networking,
so you will avoid it in your own apps.

After I have convinced you of the evilness of this approach, I will show you how to
do it the right way. That only requires a small modification to the code but may
require a big change in how you think about these problems.

Asynchronous networking (the right kind, with an “a”) makes your apps much more
responsive, but also brings with it additional complexity that you need to deal with.

Sending the HTTP request to the iTunes server
The to-do list for this section:

• Create the URL with the search parameters.

• Do the request on the iTunes server and see if you get any data back.

• Turn the JSON data into something more useful, i.e. SearchResult objects.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 62

• Show these SearchResult objects in the table view.

• Take care of errors. There may be no or a very bad network connection, or the
iTunes server may send back data that the app does not know how to interpret.
The app should be able to recover from such situations.

You will not worry about downloading the artwork images for now; just the list of
products will be plenty for our poor brains to handle.

➤ Add a new method to SearchViewController.swift:

func iTunesURL(searchText: String) -> URL {
 let urlString = String(format:
 "https://itunes.apple.com/search?term=%@", searchText)
 let url = URL(string: urlString)
 return url!
}

This first builds the URL as a string by placing the text from the search bar behind
the “term=” parameter, and then turns this string into a URL object.

Because URL(string) is one of those failable initializers, it returns an optional. You
force unwrap that using url! to return an actual URL object.

HTTPS vs. HTTP

Previously you used http:// but here you’re using https://. The difference is
that HTTPS is the secure, encrypted version of HTTP. It protects your users
from eavesdropping. The underlying protocol is the same but any bytes that
you’re sending or receiving are encrypted before they go out on the network.

As of iOS 9, apps should always use HTTPS. In fact, even if you specify an
unprotected http:// URL, iOS will still try to connect using HTTPS. If the
server isn’t configured to speak HTTPS but only unprotected HTTP, then the
network connection will fail.

You can ask to be exempt from this behavior in your Info.plist file, but that is
generally not recommended. Later in the tutorial you’ll learn how to do this
because the artwork images are hosted on a server that does not talk HTTPS.

➤ Change searchBarSearchButtonClicked() to:

func searchBarSearchButtonClicked(_ searchBar: UISearchBar) {
 if !searchBar.text!.isEmpty {
 searchBar.resignFirstResponder()

 hasSearched = true
 searchResults = []

 let url = iTunesURL(searchText: searchBar.text!)
 print("URL: '\(url)'")

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 63

 tableView.reloadData()
 }
}

You’ve removed the code that creates the fake SearchResult items, and instead call
the new iTunesURL(searchText) method. For testing purposes you log the URL object
that this method returns.

This logic sits inside the if-statement so that none of this happens unless the user
actually typed text into the search bar – it doesn’t make much sense to search the
iTunes store for “nothing”.

Note: Don’t get confused by all the exclamation points in the line,
if !searchBar.text!.isEmpty

The first one is the “logical not” operator because you want to go inside the if-
statement if the text is not empty. The second exclamation point is for force
unwrapping the value of searchBar.text, which is an optional. (It will never
actually be nil, so it being an optional is a bit silly, but whaddya gonna do?)

➤ Run the app and type in some search text, for example “metallica” (or one of
your other favorite metal bands), and press the Search button.

Xcode should now show this in its Debug pane:

URL: 'https://itunes.apple.com/search?term=metallica'

That looks good.

➤ Now type “angry birds” into the search box.

Whoops, the app crashes!

The crash after searching for “angry birds”

Look into the left-hand pane of the Xcode debugger and you’ll see that the value of
the url constant is nil (this may also show up as 0x0000… followed by a whole

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 64

bunch of zeros).

The app apparently did not create a valid URL object. But why?

A space is not a valid character in a URL. Many other characters aren’t valid either
(such as the < or > signs) and therefore must be escaped. Another term for this is
URL encoding.

A space, for example, can be encoded as the + sign (you did that earlier when you
typed the URL into the web browser) or as the character sequence %20.

➤ Fortunately, String can do this encoding already, so you only have to add one
extra statement to the app to make this work:

func iTunesURL(searchText: String) -> URL {
 let escapedSearchText = searchText.addingPercentEncoding(
 withAllowedCharacters: CharacterSet.urlQueryAllowed)!
 let urlString = String(format:
 "https://itunes.apple.com/search?term=%@", escapedSearchText)
 let url = URL(string: urlString)
 return url!
}

This calls the addingPercentEncoding(withAllowedCharacters) method to escape the
special characters, which returns a new string that you use for the search term.

UTF-8 string encoding

This new string treats the special characters as being “UTF-8 encoded”. It’s
important to know what that means because you’ll run into this UTF-8 thing
every once in a while when dealing with text.

There are many different ways to encode text. You’ve probably heard of ASCII
and Unicode, the two most common encodings.

UTF-8 is a version of Unicode that is very efficient for storing regular text, but
less so for special symbols or non-Western alphabets. Still, it’s the most
popular way to deal with Unicode text today.

Normally you don’t have to worry about how your strings are encoded but
when sending requests to a web service you need to transmit the text in the
proper encoding. Tip: When in doubt, use UTF-8, it will almost always work.

➤ Run the app and search for “angry birds” again. This time a valid URL object can
be created, and it looks like this:

URL: 'https://itunes.apple.com/search?term=angry%20birds'

The space has been turned into the character sequence %20. The % indicates an
escaped character and 20 is the UTF-8 value for a space. Also try searching for
terms with other special characters, such as # and * or even Emoji, and see what

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 65

happens.

Now that you have a URL object, you can do some actual networking!

➤ Add a new method to SearchViewController.swift:

func performStoreRequest(with url: URL) -> String? {
 do {
 return try String(contentsOf: url, encoding: .utf8)
 } catch {
 print("Download Error: \(error)")
 return nil
 }
}

The meat of this method is the call to String(contentsOf, encoding) that returns a
new string object with the data it receives from the server at the other end of the
URL.

Note that you’re telling the app to interpret the data as UTF-8 text. Should the
server send back the text in a different encoding then it will look like a garbled
mess to your app. It’s important that the sending and receiving sides agree on the
encoding they are using!

Because things can go wrong – for example, the network may be down and the
server cannot be reached – you’re putting this in a do-try-catch block. If there is a
problem, the code jumps to the catch section and the error variable contains more
details about the error. You return nil to signal that the request failed.

➤ Add the following lines to searchBarSearchButtonClicked(), below the print()
line:

if let jsonString = performStoreRequest(with: url) {
 print("Received JSON string '\(jsonString)'")
}

This invokes performStoreRequest() with the URL object as a parameter and returns
the JSON data that is received from the server. If everything goes according to
plan, this method returns a new string object that contains the JSON data that
you’re after. Let’s try it out!

➤ Run the app and search for your favorite band. After a second or so, a whole
bunch of data will be dumped to the Xcode Debug pane:

URL: 'http://itunes.apple.com/search?term=metallica'

Received JSON string '

{
 "resultCount":50,
 "results": [
{"wrapperType":"track", "kind":"song", "artistId":3996865,

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 66

"collectionId":579372950, "trackId":579373079, "artistName":"Metallica",
"collectionName":"Metallica", "trackName":"Enter Sandman",
"collectionCensoredName":"Metallica", "trackCensoredName":"Enter
Sandman",
. . . and so on . . .

Congratulations! You’ve successfully made the app talk to a web service.

This prints the same stuff that you saw in the web browser earlier. Right now it’s all
contained in a single String object, which isn’t really convenient for our purposes,
but you’ll convert it to a more useful format in a minute.

Of course, it’s possible that you received an error. In that case, the output will be
something like this:

Download Error: Error Domain=NSCocoaErrorDomain Code=256 "The operation
couldn’t be completed. (Cocoa error 256.)" UserInfo=0x7fc7e580bb10
{NSURL=https://itunes.apple.com/search?term=metallica}

You’ll add better error handling to the app later, but if you get such an error at this
point, then make sure your computer is connected to the Internet (or your iPhone
in case you’re running the app on the device and not in the Simulator). Also try the
URL directly in your web browser and see if that works.

Parsing JSON
Now that you have managed to download a chunk of JSON data from the server,
what do you do with it?

JSON is a so-called structured data format. It typically consists of arrays and
dictionaries that contain other arrays and dictionaries, as well as regular data such
as string and numbers.

The JSON from the iTunes store roughly looks like this:

{
 "resultCount": 50,
 "results": [. . . a bunch of other stuff . . .]
}

The { } brackets surround a dictionary. This particular dictionary has two keys:
resultCount and results. The first one, resultCount, has a numeric value. This is
the number of items that matched your search query. By default the limit is a
maximum of 50 items but as you shall later see you can increase this upper limit.

The results key contains an array, which is delineated by the [] brackets. Inside
that array are more dictionaries, each of which describes a single product from the
store. You can tell these things are dictionaries because they have the { } brackets
again.

Here are two of these items from the array:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 67

{
 "wrapperType": "track",
 "kind": "song",
 "artistId": 3996865,
 "artistName": "Metallica",
 "trackName": "Enter Sandman",
 . . . and so on . . .
},
{
 "wrapperType": "track",
 "kind": "song",
 "artistId": 3996865,
 "artistName": "Metallica",
 "trackName": "Nothing Else Matters",
 . . . and so on . . .
},

Each product is represented by a dictionary with several keys. The values of the
kind and wrapperType keys determine what sort of product this is: a song, a music
video, an audiobook, and so on. The other keys describe the artist and the song
itself.

The structure of the JSON data

To summarize, the JSON data represents a dictionary and inside that dictionary is
an array of more dictionaries. Each of the dictionaries from the array represents
one search result.

Currently all of this sits in a String, which isn’t very handy, but using a so-called
JSON parser you can turn this data into actual Dictionary and Array objects.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 68

JSON or XML?
JSON is not the only structured data format out there. A slightly more formal
standard is XML, which stands for Extensible Markup Language. Both formats serve
the same purpose but they look a bit different. If the iTunes store would return its
results as XML, the output would look more like this:

<?xml version="1.0" encoding="utf-8"?>
<iTunesSearch>
 <resultCount>5</resultCount>
 <results>
 <song>
 <artistName>Metallica</artistName>
 <trackName>Enter Sandman</trackName>
 </song>
 <song>
 <artistName>Metallica</artistName>
 <trackName>Nothing Else Matters</trackName>
 </song>
 . . . and so on . . .
 </results>
</iTunesSearch>

These days most developers prefer JSON because it’s simpler than XML and easier
to parse. But it’s perfectly possible that if you want your app to talk to a particular
web service you’ll be expected to speak XML.

In the past, if you wanted to parse JSON it used to be necessary to include a third-
party framework into your apps but these days iOS comes with its own JSON
parser, so that’s easy.

➤ Add the following method somewhere in SearchViewController.swift:

func parse(json: String) -> [String: Any]? {
 guard let data = json.data(using: .utf8, allowLossyConversion: false)
 else { return nil }

 do {
 return try JSONSerialization.jsonObject(
 with: data, options: []) as? [String: Any]
 } catch {
 print("JSON Error: \(error)")
 return nil
 }
}

You’re using the JSONSerialization object here to convert the JSON search results
to a Dictionary.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 69

The dictionary is of type [String: Any]. The dictionary keys will always be strings
but the values from these keys can be anything from a string to a number to a
boolean. That’s why the type of the values is Any.

Because the JSON data is currently in the form of a string, you have to put it into a
Data object first. Again you have to be specific about what encoding to use: UTF-8.

The chance is small but it’s possible that this conversion of string to Data fails – for
example, if the text from the string cannot be represented in the encoding you’ve
chosen. That is why you’re using a guard statement.

guard let works like if let, it unwraps the optionals for you. But if unwrapping
fails, i.e. if json.data(…) returns nil, the guard’s else block is executed and you
return nil to indicate that parse(json) failed. This “should” never happen in our
app, but it’s good to be vigilant about this kind of thing. (Never say never!)

If everything went OK – and 99.999% of the time it will! – you convert the Data
object into a Dictionary using JSONSerialization.jsonObject(…). Or at least, you
hope you can convert it into a dictionary…

Assumptions cause trouble
When you write apps that talk to other computers on the Internet, one thing to
keep in mind is that your conversational partners may not always say the things
you expect them to say.

There could be an error on the server and instead of valid JSON data it may send
back some error message. In that case, JSONSerialization will not be able to parse
the data and the app will return nil from parse(json).

Another thing that could happen is that the owner of the server changes the format
of the data they send back. Usually this is done in a new version of the web service
that runs on some other URL or that requires you to send along a “version”
parameter. But not everyone is careful like that and by changing what the server
does, they may break apps that depend on the data coming back in a specific
format.

Just because JSONSerialization was able to turn the string into valid Swift objects,
doesn’t mean that it returns a Dictionary! It could have returned an Array or even
a String or a number…

In the case of the iTunes store web service, the top-level object should be a
Dictionary, but you can’t control what happens on the server. If for some reason
the server programmers decide to put [] brackets around the JSON data, then the
top-level object will no longer be a Dictionary but an Array.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 70

Being paranoid about these kinds of things and showing an error message in the
unlikely event this happens is a lot better than your application suddenly crashing
when something changes on a server that is outside of your control.

Just to be sure, you’re using the as? cast to check that the object returned by
JSONSerialization is truly a Dictionary. Should the conversion to a dictionary of
Strings and Any objects fail, then the app doesn’t burst into flames but simply
returns nil to signal an error.

It’s good to add checks like these to the app to make sure you get back what you
expect. If you don’t own the servers you’re talking to, it’s best to program
defensively.

➤ Add the following lines to searchBarSearchButtonClicked(), inside the if let
jsonString block:

if let jsonDictionary = parse(json: jsonString) {
 print("Dictionary \(jsonDictionary)")
}

You simply call the new parse(json) method and print its return value.

➤ Run the app and search for something. The Xcode Debug pane now prints the
following:

Dictionary [results: <__NSArrayI 0x...>(
 {
 artistId = 3996865;
 artistName = Metallica;
 kind = song;
 trackName = "Enter Sandman";
 . . . more fields . . .
 },
 {
 artistId = 3996865;
 artistName = Metallica;
 kind = song;
 trackName = "Nothing Else Matters";
 . . . more fields . . .
 },
 . . . and so on . . .
), resultCount: 50]

This should look very familiar to the JSON data – which is not so strange because it
represents the exact same thing – except that now you’re looking at the contents of
a Swift Dictionary object.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 71

You have converted a bunch of text that was all packed together in a single string
into actual objects that you can use.

Parsing JSON turns text into objects

Let’s add an alert to handle potential errors. It’s inevitable that something goes
wrong somewhere, so it’s best to be prepared.

➤ Add the following method:

func showNetworkError() {
 let alert = UIAlertController(
 title: "Whoops...",
 message:
 "There was an error reading from the iTunes Store. Please try again.",
 preferredStyle: .alert)

 let action = UIAlertAction(title: "OK", style: .default, handler: nil)
 alert.addAction(action)

 present(alert, animated: true, completion: nil)
}

Nothing you haven’t seen before; it simply presents an alert controller with an error
message.

➤ Change searchBarSearchButtonClicked() to the following:

func searchBarSearchButtonClicked(_ searchBar: UISearchBar) {
 if !searchBar.text!.isEmpty {
 . . .

 if let jsonString = performStoreRequestWithURL(url) {
 if let jsonDictionary = parseJSON(jsonString) {
 print("Dictionary \(jsonDictionary)")

 tableView.reloadData() // this has changed

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 72

 return
 }
 }

 showNetworkError() // this is new
 }
}

You moved the call to tableView.reloadData() into the innermost if let statement
and added a return statement. If the code made it there, then everything went OK.
But if something goes wrong, one of these if let statements is false, and you call
showNetworkError() to show an alert box.

If you did everything correctly up to this point then the web service should always
have worked. Still it’s a good idea to test a few error situations, just to make sure
the error handling is working for those unlucky users with bad network connections.

➤ Try this: In the iTunesURL(searchText) method, temporarily change the
itunes.apple.com part of the URL to “NOMOREitunes.apple.com”.

You should now get an error alert when you try a search because no such server
exists at that address. This simulates the iTunes server being down. Don’t forget to
change the URL back when you’re done testing.

Tip: To simulate no network connection you can pull the network cable and/or
disable Wi-Fi on your Mac, or run the app on your device in Airplane Mode.

The app shows an alert when there is a network error

Interestingly enough, a little while ago I was also able to make the app fail simply
by searching for “photoshop”. The Xcode Debug pane said:

JSON Error: Error Domain=NSCocoaErrorDomain Code=3840 "The operation
couldn’t be completed. (Cocoa error 3840.)" (Missing low code point in
surrogate pair around character 92893.) UserInfo=0x6eb3110
{NSDebugDescription=Missing low code point in surrogate pair around
character 92893.}

This may sound like gibberish, but it means that JSONSerialization was unable to
convert the data to Swift objects because it thinks there is some error in the data.
However, when I typed the URL into my web browser it seemed to return valid
JSON data, which I verified with JSONLint (jsonlint.com).

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 73

So who was right? It could have been a bug in JSONSerialization or it could be that
the iTunes web service did something naughty… As of the current revision of this
tutorial, searching for “photoshop” works again.

In any case, it should be obvious that when you’re doing networking things can –
and will! – go wrong, often in unexpected ways.

Turning the JSON into SearchResult objects
So far you’ve managed to send a request to the iTunes web service and you parsed
the JSON data into a bunch of Dictionary objects. That’s a great start, but now you
are going to turn this into an array of SearchResult objects because they’re much
easier to work with.

The iTunes store sells different kinds of products – songs, e-books, software,
movies, and so on – and each of these has its own structure in the JSON data. A
software product will have screenshots but a movie will have a video preview. The
app will have to handle these different kinds of data.

You’re not going to support everything the iTunes store has to offer, only these
items:

• Songs, music videos, movies, TV shows, podcasts

• Audio books

• Software (apps)

• E-books

The reason I have split them up like this is because that’s how the iTunes store
does it. Songs and music videos, for example, share the same set of fields, but
audiobooks and software have different data structures. The JSON data makes this
distinction using the kind and wrapperType fields.

➤ Add a new method, parse(dictionary), to SearchViewController.swift:

func parse(dictionary: [String: Any]) {
 // 1
 guard let array = dictionary["results"] as? [Any] else {
 print("Expected 'results' array")
 return
 }
 // 2
 for resultDict in array {
 // 3
 if let resultDict = resultDict as? [String: Any] {
 // 4
 if let wrapperType = resultDict["wrapperType"] as? String,
 let kind = resultDict["kind"] as? String {
 print("wrapperType: \(wrapperType), kind: \(kind)")
 }
 }

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 74

 }
}

This method goes through the top-level dictionary and looks at each search result
in turn. Here’s what happens step-by-step:

1. First there is a bit of defensive programming to make sure the dictionary has a
key named results that contains an array. It probably will, but better safe than
sorry.

2. Once it is satisfied that array exists, the method uses a for in loop to look at
each of the array’s elements in turn.

3. Each of the elements from the array is another dictionary. A small wrinkle: the
type of resultDict isn’t Dictionary as we’d like it to be, but Any, because the
contents of the array could in theory be anything.

To make sure these objects really do represent dictionaries, you have to cast
them to the right type first. You’re using the optional cast as? here as another
defensive measure. In theory it’s possible resultDict doesn’t actually hold a
[String: Any] dictionary and then you don’t want to continue.

4. For each of the dictionaries, you print out the value of its wrapperType and kind
fields. Indexing a dictionary always gives you an optional, which is why you’re
using if let to unwrap these two values. And because the dictionary only
contains values of type Any, you also cast to the more useful String.

➤ Call this method from searchBarSearchButtonClicked(), just before the line that
reloads the table view.

parse(dictionary: jsonDictionary)

➤ Run the app and do a search. Look at the Xcode output.

When I did this, Xcode showed three different types of products, with the majority
of the results being songs. What you see may vary, depending on what you search
for.

wrapperType: track, kind: song
wrapperType: track, kind: feature-movie
wrapperType: track, kind: music-video
. . .

To turn these things into SearchResult objects, you’re going to look at value of the
wrapperType field first. If that is “track” then you know that the product in question
is a song, movie, music video, podcast or episode of a TV show.

Other values for wrapperType are “audiobook” for audio books and “software” for
apps, and you will interpret these differently than “tracks”.

But before you get to that, let’s first add some new properties to the SearchResult

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 75

object.

Always check the documentation
If you were wondering how I knew how to interpret the data from the iTunes web
service, or even how to make the URLs to use the service in the first place, then
you should realize there is no way you can be expected to use a web service if
there is no documentation.

Fortunately, for the iTunes store web service there is a pretty good document that
explains how to use it:

https://affiliate.itunes.apple.com/resources/documentation/itunes-store-web-
service-search-api/

Just reading the docs is often not enough. You have to play with the web service for
a bit to know what you can and cannot do.

There are some things that the StoreSearch app needs to do with the search results
that were not clear from reading the documentation. For example, e-books do not
include a wrapperType field for some reason.

So first read the docs and then play with it. That goes for any API, really, whether
it’s something from the iOS SDK or a web service.

A better SearchResult
The current SearchResult class only has two properties: name and artistName. As
you’ve seen, the iTunes store returns a lot more information than that, so you’ll
need to add a few new properties.

➤ Add the following instance variables to SearchResult.swift:

var artworkSmallURL = ""
var artworkLargeURL = ""
var storeURL = ""
var kind = ""
var currency = ""
var price = 0.0
var genre = ""

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 76

You’re not including everything that the iTunes store returns, only the fields that are
interesting to this app.

SearchResult stores two artwork URLs, one for a 60×60 pixel image and the other
for a 100×100 pixel image. It also stores the kind and genre of the item, its price
and the currency (US dollar, Euro, British Pounds, etc.), as well as a link to the
product’s page on the iTunes store itself.

All right, now that you have some place to put this data, let’s get it out of the
dictionaries and into the SearchResult objects.

➤ Back in SearchViewController.swift, make the following changes to the
parse(dictionary) method:

func parse(dictionary: [String: Any]) -> [SearchResult] {
 guard let array = dictionary["results"] as? [Any] else {
 print("Expected 'results' array")
 return []
 }

 var searchResults: [SearchResult] = []

 for resultDict in array {
 . . .
 }

 return searchResults
}

You’re making the method return an array of SearchResult objects. (If something
went wrong during parsing, it simply returns an empty array.)

➤ Still in parse(dictionary), change the inside of the if let resultDict statement
to the following. The existing code marked with //4 should be replaced by:

var searchResult: SearchResult?

if let wrapperType = resultDict["wrapperType"] as? String {
 switch wrapperType {
 case "track":
 searchResult = parse(track: resultDict)
 default:
 break
 }
}

if let result = searchResult {
 searchResults.append(result)
}

If the found item is a “track” then you create a SearchResult object for it, using a
new method parse(track), and add it to the searchResults array.

For any other types of products, the temporary variable searchResult remains nil

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 77

and doesn’t get added to the array (that’s why it’s an optional).

You’ll be adding more wrapper types to the switch soon but for now you’re limiting
it to just the “track” type, which is used for songs, movies, and TV episodes.

➤ Also add the parse(track) method:

func parse(track dictionary: [String: Any]) -> SearchResult {
 let searchResult = SearchResult()

 searchResult.name = dictionary["trackName"] as! String
 searchResult.artistName = dictionary["artistName"] as! String
 searchResult.artworkSmallURL = dictionary["artworkUrl60"] as! String
 searchResult.artworkLargeURL = dictionary["artworkUrl100"] as! String
 searchResult.storeURL = dictionary["trackViewUrl"] as! String
 searchResult.kind = dictionary["kind"] as! String
 searchResult.currency = dictionary["currency"] as! String

 if let price = dictionary["trackPrice"] as? Double {
 searchResult.price = price
 }
 if let genre = dictionary["primaryGenreName"] as? String {
 searchResult.genre = genre
 }
 return searchResult
}

It’s a big chunk of code but what happens here is quite simple. You first instantiate
a new SearchResult object, then get the values out of the dictionary and put them
into the SearchResult’s properties.

All of these things are strings except the track price, which is a number. Because
the dictionary is defined as having Any values, you first need to cast to String and
Double here.

Note: Something else interesting is going on here, did you spot it? You’ve
learned that indexing a dictionary always gives you an optional. If that is true,
then why don’t you need to use if let with lines such as these:
searchResult.name = dictionary["trackName"] as! String

After all, dictionary["trackName"] is an optional but searchResult.name is
definitely not… How come you can assign an optional value to a non-optional?

The trick is in the cast. When you write “as! <something>”, you’re telling the
compiler that you’re sure this isn’t ever going to be nil. (Of course if it turns
out you’re wrong, the app will crash.)

If you wanted to keep the optional status, you’d have to write “as! String?” or
“as? String”. The former means you’re casting to an optional String; the
latter means you’re trying to cast to a regular String but it might fail and be
nil because it’s not really a string. It’s a subtle difference.

The reason you’re using if let for the trackPrice and primaryGenreName is
that sometimes these fields are missing from the JSON data.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 78

With these latest changes, parse(dictionary) returns an array of SearchResult
objects, but you’re not doing anything with that array yet.

➤ In searchBarSearchButtonClicked(), change the line that calls parse(dictionary)
to the following:

searchResults = parse(dictionary: jsonDictionary)

Now the returned array is placed into the instance variable and the table view can
show the actual search result objects.

➤ Run the app and search for your favorite musician. After a second or so you
should see a whole bunch of results appear in the table. Cool!

You don’t have to search for music, of course. You can also search for names of
books, software, or authors. For example, a search for Stephen King brings up
results such as these:

The results from the search now show up in the table

The search results may include podcasts, songs, or other related products. It would
be useful to make the table view display what type of product it is showing, so let’s
improve tableView(cellForRowAt) a little.

➤ In tableView(cellForRowAt), change the line that sets cell.artistNameLabel to
the following:

if searchResult.artistName.isEmpty {
 cell.artistNameLabel.text = "Unknown"
} else {
 cell.artistNameLabel.text = String(format: "%@ (%@)",
 searchResult.artistName, searchResult.kind)
}

The first change is that you now check that the SearchResult’s artistName is not
empty. When testing the app I noticed that sometimes a search result did not

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 79

include an artist name. In that case you make the cell say “Unknown”.

You also add the value of the kind property to the artist name label, which should
tell the user what kind of product they’re looking at:

They’re not books…

There is one problem with this. The value of kind comes straight from the server
and it is more of an internal name than something you’d want to show directly to
the user.

What if you want it to say “Movie” instead, or maybe you want to translate the app
to another language (something you’ll do later in this tutorial). It’s better to convert
this internal identifier (“feature-movie”) into the text that you want to show to the
user (“Movie”).

➤ Add this new method:

func kindForDisplay(_ kind: String) -> String {
 switch kind {
 case "album": return "Album"
 case "audiobook": return "Audio Book"
 case "book": return "Book"
 case "ebook": return "E-Book"
 case "feature-movie": return "Movie"
 case "music-video": return "Music Video"
 case "podcast": return "Podcast"
 case "software": return "App"
 case "song": return "Song"
 case "tv-episode": return "TV Episode"
 default: return kind
 }
}

These are the types of products that this app understands.

It’s possible that I missed one or that the iTunes Store adds a new product type at
some point. If that happens, the switch jumps to the default: case and you’ll
simply return the original kind value (and hopefully fix this in an update of the
app).

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 80

➤ In tableView(cellForRowAt), change the line that sets the artist name label to:

cell.artistNameLabel.text = String(format: "%@ (%@)",
 searchResult.artistName, kindForDisplay(searchResult.kind))

Now the text inside the parentheses is no longer the internal identifier from the
iTunes web service, but the one you gave it:

The product type is a bit more human-friendly

All right, let’s put in the other types of products. This is very similar to what you
just did.

➤ Add the following methods below parse(track). Feel free to copy-paste the code
from parse(track) three times, but be careful about the differences between these
methods!

func parse(audiobook dictionary: [String: Any]) -> SearchResult {
 let searchResult = SearchResult()
 searchResult.name = dictionary["collectionName"] as! String
 searchResult.artistName = dictionary["artistName"] as! String
 searchResult.artworkSmallURL = dictionary["artworkUrl60"] as! String
 searchResult.artworkLargeURL = dictionary["artworkUrl100"] as! String
 searchResult.storeURL = dictionary["collectionViewUrl"] as! String
 searchResult.kind = "audiobook"
 searchResult.currency = dictionary["currency"] as! String

 if let price = dictionary["collectionPrice"] as? Double {
 searchResult.price = price
 }
 if let genre = dictionary["primaryGenreName"] as? String {
 searchResult.genre = genre
 }
 return searchResult
}

func parse(software dictionary: [String: Any]) -> SearchResult {
 let searchResult = SearchResult()
 searchResult.name = dictionary["trackName"] as! String
 searchResult.artistName = dictionary["artistName"] as! String
 searchResult.artworkSmallURL = dictionary["artworkUrl60"] as! String
 searchResult.artworkLargeURL = dictionary["artworkUrl100"] as! String
 searchResult.storeURL = dictionary["trackViewUrl"] as! String
 searchResult.kind = dictionary["kind"] as! String
 searchResult.currency = dictionary["currency"] as! String

 if let price = dictionary["price"] as? Double {

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 81

 searchResult.price = price
 }
 if let genre = dictionary["primaryGenreName"] as? String {
 searchResult.genre = genre
 }
 return searchResult
}

func parse(ebook dictionary: [String: Any]) -> SearchResult {
 let searchResult = SearchResult()
 searchResult.name = dictionary["trackName"] as! String
 searchResult.artistName = dictionary["artistName"] as! String
 searchResult.artworkSmallURL = dictionary["artworkUrl60"] as! String
 searchResult.artworkLargeURL = dictionary["artworkUrl100"] as! String
 searchResult.storeURL = dictionary["trackViewUrl"] as! String
 searchResult.kind = dictionary["kind"] as! String
 searchResult.currency = dictionary["currency"] as! String

 if let price = dictionary["price"] as? Double {
 searchResult.price = price
 }
 if let genres: Any = dictionary["genres"] {
 searchResult.genre = (genres as! [String]).joined(separator: ", ")
 }
 return searchResult
}

Two interesting points here:

• Audio books don’t have a “kind” field, so you have to set the kind property to
"audiobook" yourself.

• E-books don’t have a “primaryGenreName” field, but an array of genres. You use
the joined(separator) method to glue these genre names into a single string,
separated by commas.

You still need to call these new methods, based on the value of the wrapperType
field.

➤ Change the if let wrapperType statement in parse(dictionary) to:

if let wrapperType = resultDict["wrapperType"] as? String {
 switch wrapperType {
 case "track":
 searchResult = parse(track: resultDict)
 case "audiobook":
 searchResult = parse(audiobook: resultDict)
 case "software":
 searchResult = parse(software: resultDict)
 default:
 break
 }
} else if let kind = resultDict["kind"] as? String, kind == "ebook" {
 searchResult = parse(ebook: resultDict)
}

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 82

For some reason, e-books do not have a wrapperType field, so in order to determine
whether something is an e-book you have to look at the kind field instead.

Depending on the value of wrapperType or kind, you call one of the parse methods
to get a SearchResult object.

If there is a wrapperType or kind that the app does not support, no SearchResult
object gets created, the value of searchResult is nil, and you simply skip that item.

Default and break

Switch statements often have a default: case at the end that just says break.

In Swift, a switch must be exhaustive, meaning that it must have a case for all
possible values of the thing that you’re looking at.

Here you’re looking at wrapperType. Swift needs to know what to do when
wrapperType is not “track”, “audiobook”, or “software”. That’s why you’re
required to include the default: case, as a catchall for any other possible
values of wrapperType.

Because a case cannot be empty in Swift, you add a break statement to keep
the compiler happy. The break doesn’t do anything – it just says “Nothing to
see here, move along.”

By the way: unlike in other languages, the case statements in Swift do not
need to say break at the end. They do not automatically “fall through” from
one case to the other as they do in Objective-C.

➤ Run the app and search for software, audio books or e-books to see that the
parsing code works. It can take a few tries before you find some because of the
enormous quantity of products on the store.

Later in this tutorial you’ll add a control that lets you pick the type of products that
you want to search for, which makes it a bit easier to find just e-books or
audiobooks.

The app shows a varied range of products now

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 83

Sorting the search results
It would be nice to sort the search results alphabetically. That’s quite easy, actually.
Array already has a method to sort itself – all you have to do is tell it what to sort
on.

➤ In searchBarSearchButtonClicked(), between the lines that call
parse(dictionary) and reload the table view, add the following:

searchResults.sort(by: { result1, result2 in
 return result1.name.localizedStandardCompare(
 result2.name) == .orderedAscending
})

Before reloading the table, you first call sort(by) on the searchResults array with a
closure that determines the sorting rules (the code in between the { } brackets).
This is identical to what you did in the Checklists tutorial to sort the to-do lists.

In order to sort the contents of the searchResults array, the closure will compare
the SearchResult objects with each other and return true if result1 comes before
result2. The closure is called repeatedly on different pairs of SearchResult objects
until the array is completely sorted.

The actual sorting rule calls localizedStandardCompare() to compare the names of
the SearchResult objects. Because you used .orderedAscending, the closure returns
true only if result1.name comes before result2.name – in other words, the array
gets sorted from A to Z.

➤ Run the app and verify that the search results are sorted alphabetically.

The search results are sorted by name

Sorting was pretty easy to add but there is an even easier way to write this.

➤ Change the sorting code to:

searchResults.sort { $0.name.localizedStandardCompare($1.name)
 == .orderedAscending }

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 84

This uses the trailing closure syntax to put the closure behind the method name,
rather than inside the traditional () parentheses as a parameter. It’s a small
improvement in readability.

More importantly, inside the closure you’re no longer referring to the two
SearchResult objects by name but with the special syntax $0 and $1. Using these
shorthand symbols instead of full parameter names is common in Swift closures.
There is also no longer a return statement.

➤ Verify that this works.

Believe it or not, you can do even better. Swift has a very cool feature called
operator overloading. It allows you to take the standard operators such as + and
* and apply them to your own objects. You can even create completely new
operator symbols.

It’s not a good idea to go overboard with this feature and make operators do
something completely unexpected – don’t overload / to do multiplications, eh? –
but it comes in very handy when doing sorting.

➤ Open SearchResult.swift and add the following code, outside of the class:

func < (lhs: SearchResult, rhs: SearchResult) -> Bool {
 return lhs.name.localizedStandardCompare(rhs.name) == .orderedAscending
}

This should look familiar! You’re creating a function named < that contains the same
code as the closure from earlier. This time the two SearchResult objects are called
lhs and rhs, for left-hand side and right-hand side, respectively.

You have now overloaded the less-than operator so that it takes two SearchResult
objects and returns true if the first one should come before the second, and false
otherwise. Like so:

searchResultA.name = "Waltz for Debby"
searchResultB.name = "Autumn Leaves"

searchResultA < searchResultB // false
searchResultB < searchResultA // true

➤ Back in SearchViewController.swift, change the sorting code to:

searchResults.sort { $0 < $1 }

That’s pretty sweet. Using the < operator makes it very clear that you’re sorting the
items from the array in ascending order. But wait, you can write it even shorter:

searchResults.sort(by: <)

Wow, it doesn’t get much simpler than that! This line literally says, “Sort this array
in ascending order”. Of course, this only works because you added your own func <

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 85

to overload the less-than operator so it takes two SearchResult objects and
compares them.

➤ Run the app again and make sure everything is still sorted.

Exercise. See if you can make the app sort by the artist name instead.

Exercise. Try to sort in descending order, from Z to A. Tip: use the > operator.

Excellent! You made the app talk to a web service and you were able to convert the
data that was received into your own data model objects.

The app may not support every product that’s shown on the iTunes store, but I
hope it illustrates the principle of how you can take data that comes in slightly
different forms and convert it to objects that are more convenient to use in your
own apps.

Feel free to dig through the web service API documentation to add the remaining
items that the iTunes store sells: https://affiliate.itunes.apple.com/resources/
documentation/itunes-store-web-service-search-api/

➤ Commit your changes.

You can find the project files for this section under 03 - Using Web Service in the
tutorial’s Source Code folder.

SDKs for APIs
Often third-party services already have their own SDK (Software Development Kit)
that lets you talk to their web service. In that case you don’t have to write your
own networking and JSON parsing code but you simply add a framework to your
app and use the classes from that framework.

Some examples:

• Facebook https://developers.facebook.com/docs/ios

• Wordnik http://developer.wordnik.com

• Amazon Web Services https://aws.amazon.com/mobile/sdk/

and many others.

If you’re really lucky, support for the web service is already built into iOS itself,
such as the Social Framework that makes it very easy to put Twitter and Facebook
into your apps.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 86

Asynchronous networking
That wasn’t so bad, was it? Yes it was, and I’ll show you why! Did you notice that
whenever you performed a search, the app became unresponsive?

While the network request was taking place, you could not scroll the table view up
or down, or type anything new into the search bar. The app was completely frozen
for a few seconds.

You may not have seen this if your network connection was very fast but if you’re
using your iPhone out in the wild, the network will be a lot slower than your home
or office Wi-Fi, and a search can easily take ten seconds or more.

So what if the app is unresponsive while the search is taking place? After all, there
is nothing for the user to do at that point anyway…

True, but to most users an app that does not respond is an app that has crashed.
The screen looks empty, there is no indication of what is going on, and even an
innocuous gesture such as sliding your finger up and down does not bounce the
table view like you’d expect it to.

Conclusion: the app has crashed. The user will press the home button and try again
– or more likely, delete your app, give it a bad rating on the App Store, and switch
to a competing app.

Still not convinced? Let’s slow down the network connection to pretend the app is
running on an iPhone that someone may be using on a bus or in a train, not in the
ideal conditions of a fast home or office network.

First off, you’ll increase the amount of data that the app will get back. By adding a
“limit” parameter to the URL you set the maximum number of results that the web
service will return. The default value is 50, the maximum is 200.

➤ In iTunesURL(searchText), change the following line:

let urlString = String(format:
 "https://itunes.apple.com/search?term=%@&limit=200", escapedSearchText)

You added &limit=200 to the URL. Just so you know, parameters in URLs are
separated by the & sign, also known as the “and” sign.

➤ If you run the app now, the search should be quite a bit slower.

Still too fast? Then use the Network Link Conditioner. This is a pane in your
System Preferences window that lets you simulate different network conditions,

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 87

including bad cell phone networks.

➤ Open the System Preferences on your Mac and locate Network Link
Conditioner (it should be at the bottom).

The Network Link Conditioner preference pane

If you don’t have it installed yet, follow these instructions: From the Xcode menu
choose Open Developer Tool → More Developer Tools… This opens the Apple
developer website (you may need to login first). From the Downloads for Apple
Developers page, download the latest Additional Tools for Xcode 8 package.
Open the downloaded file and under Hardware double-click Network Link
Conditioner.prefPane to install it.

Let’s simulate a really slow connection.

➤ Click on Manage Profiles and create a new profile with the following settings:

• Name: Very slow connection

• Downlink Bandwidth: 48 Kbps

• Downlink Packets Dropped: 0 %

• Downlink Delay: 5000 ms (i.e. 5 seconds)

Adding the profile for a very slow connection

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 88

Press OK to add this profile and return to the main page. Make sure this new profile
is selected and flick the switch to ON to start.

➤ Now run the app and search for something. The Network Link Conditioner tool
will delay the HTTP request by 5 seconds in order to simulate a slow connection,
and then downloads the data at a very slow speed.

Tip: If the download still appears very fast, then try searching for some term
you haven’t used before; the system may be caching the results from a
previous search.

Notice how the app totally doesn’t respond during this time? It feels like something
is wrong. Did the app crash or is it still doing something? It’s impossible to tell and
very confusing to your users when this happens.

Even worse, if your program is unresponsive for too long, iOS may actually kill it by
force, in which case it really did crash. You don’t want that to happen!

“Ah,” you say, “let’s show some type of animation to let the user know that the app
is communicating with a server. Then at least they will know that the app is busy.”

That sounds like a decent thing to do, so let’s get to it.

Tip: Even better than pretending to have a lousy connection on the Simulator
is to use Network Link Conditioner on your device, so you can also test bad
network connections on your actual iPhone. You can find it under Settings →
Developer → Network Link Conditioner. Using these tools to test whether
your app can deal with real-world network conditions is a must! Not every user
has the luxury of broadband…

The activity indicator
You’ve used the spinning activity indicator before in MyLocations to show the user
that the app was busy. Let’s create a new table view cell that you’ll show while the
app is querying the iTunes store. It will look like this:

The app shows that it is busy

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 89

➤ Create a new, empty nib file. Call it LoadingCell.xib.

➤ Drag a new Table View Cell into the canvas. Set its width to 320 points and its
height to 80 points.

➤ Set the reuse identifier of the cell to LoadingCell and set the Selection
attribute to None.

➤ Drag a new Label into the cell. Rename it to Loading... and change the font to
System 15. The label’s text color should be 50% opaque black.

➤ Drag a new Activity Indicator View into the cell and put it next to the label.
Set its Style to Gray and give it the Tag 100.

The design looks like this:

The design of the LoadingCell nib

To make this cell work properly on the larger iPhone 6 and 7 models you’ll add
constraints that keep the label and the activity spinner centered in the cell. The
easiest way to do this is to place these two items inside a container view and center
that.

➤ Select both the Label and the Activity Indicator View (hold down ⌘ to make a
multiple selection). From the Xcode menu bar, choose Editor → Embed In →
View. This puts a larger, white, view behind them.

The label and the spinner now sit in a container view

➤ With this container view selected, click the Align button and put checkmarks in
front of Horizontally in Container and Vertically in Container to make new
constraints.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 90

The container view has red constraints

You end up with a number of red constraints. That’s no good; we want to see blue
ones. The reason your new constraints are red is that Auto Layout does not know
yet how large this container view should be; you’ve only added constraints for the
view’s position, not its size.

To fix this, you’re going to add constraints to the label and activity indicator as well,
so that the width and height of the container view are determined by the size of the
two things inside it.

That is especially important for later when you’re going to translate the app to
another language. If the Loading… text becomes larger or smaller, then so should
the container view, in order to stay centered inside the cell.

➤ Select the label and click the Pin button. Simply pin it to all four sides. Leave
Update Frames set to None for now and press Add 4 Constraints.

➤ Repeat this for the Activity Indicator View. You don’t need to pin it to the left
because that constraint already exists (pinning the label added it).

Now the constraints for the label and the activity indicator should be all blue.

The label and spinner have blue constraints

At this point, the container view may still have orange lines. If so, select it and
choose Editor → Resolve Auto Layout Issues → Update Frames (under
Selected Views). This will move the container view into the position dictated by its
constraints.

Cool, you now have a cell that automatically adjusts itself to any size device.

To make this special table view cell appear you’ll follow the same steps as for the
“Nothing Found” cell.

➤ Add the following line to the struct TableViewCellIdentifiers in
SearchViewController.swift:

static let loadingCell = "LoadingCell"

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 91

➤ And register the nib in viewDidLoad():

cellNib = UINib(nibName: TableViewCellIdentifiers.loadingCell,
 bundle: nil)
tableView.register(cellNib, forCellReuseIdentifier:
 TableViewCellIdentifiers.loadingCell)

Now you have to come up with some way to let the table view’s data source know
that the app is currently in a state of downloading data from the server.

The simplest way to do that is to add another boolean flag. If this variable is true,
then the app is downloading stuff and the new Loading… cell should be shown; if
the variable is false, you show the regular contents of the table view.

➤ Add a new instance variable:

var isLoading = false

➤ Change tableView(numberOfRowsInSection) to:

func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 if isLoading {
 return 1
 } else if !hasSearched {
 . . .
 } else if . . .

You’ve added the if isLoading statement to return 1, because you need a row in
order to show a cell.

➤ Add the following to the top of tableView(cellForRowAt):

func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {

 if isLoading {
 let cell = tableView.dequeueReusableCell(withIdentifier:
 TableViewCellIdentifiers.loadingCell, for: indexPath)

 let spinner = cell.viewWithTag(100) as! UIActivityIndicatorView
 spinner.startAnimating()
 return cell
 }
 else if searchResults.count == 0 {
 . . .

You added an if-statement to return an instance of the new Loading… cell. It also
looks up the UIActivityIndicatorView by its tag and then tells the spinner to start
animating. The rest of the method stays the same.

➤ Change tableView(willSelectRowAt) to:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 92

func tableView(_ tableView: UITableView,
 willSelectRowAt indexPath: IndexPath) -> IndexPath? {
 if searchResults.count == 0 || isLoading {
 return nil
 } else {
 return indexPath
 }
}

You added || isLoading to the if-statement. Just like you don’t want the users to
select the “Nothing Found” cell, you also don’t want them to select the “Loading…”
cell, so you return nil in both cases.

That leaves only one thing to do: you should set isLoading to true before you make
the HTTP request to the iTunes server, and also reload the table view to make the
Loading… cell appear.

➤ Change searchBarSearchButtonClicked() to:

func searchBarSearchButtonClicked(_ searchBar: UISearchBar) {
 if !searchBar.text!.isEmpty {
 searchBar.resignFirstResponder()

 isLoading = true // add these two lines
 tableView.reloadData()

 // . . . here is the networking code . . .

 isLoading = false // add this line
 tableView.reloadData()
 return

 . . .
}

Before you do the networking request, you set isLoading to true and reload the
table to show the activity indicator.

After the request completes and you have the search results, you set isLoading
back to false and reload the table again to show the SearchResult objects.

Makes sense, right? Let’s fire up the app and see this in action.

➤ Run the app and perform a search. While search is taking place the Loading… cell
with the spinning activity indicator should appear…

…or should it?!

The sad truth is that there is no spinner to be seen. And in the unlikely event that it
does show up for you, it won’t be spinning. (Try it with Network Link Conditioner
enabled.)

➤ To show you why, first change searchBarSearchButtonClicked() to the following.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 93

You don’t have to remove anything from the code, simply comment out everything
after the first call to tableView.reloadData().

func searchBarSearchButtonClicked(_ searchBar: UISearchBar) {
 if !searchBar.text!.isEmpty {
 searchBar.resignFirstResponder()

 isLoading = true
 tableView.reloadData()

 /*
 . . . the networking code (commented out) . . .
 */
 }
}

➤ Run the app and do a search. Now the activity spinner does show up!

So at least you know that part of the code is working fine. But with the networking
code enabled the app isn’t only totally unresponsive to any input from the user, it
also doesn’t want to redraw its screen. What’s going on here?

The main thread
The CPU (Central Processing Unit) in older iPhone and iPad models has one core,
which means it can only do one thing at the time. More recent models have a CPU
with two cores, which allows for a whopping two computations to happen
simultaneously. Your Mac may have 4 cores.

With so few cores available, how come modern computers can have many more
applications and other processes running at the same time? (I count 287 active
processes on my Mac right now.)

To get around the hardware limitation of having only one or two CPU cores, most
computers including the iPhone and iPad use preemptive multitasking and
multithreading to give the illusion that they can do many things at once.

Multitasking is something that happens between different apps. Each app is said to
have its own process and each process is given a small portion of each second of
CPU time to perform its jobs. Then it is temporarily halted, or pre-empted, and
control is given to the next process.

Each process contains one or more threads. I just mentioned that each process in
turn is given a bit of CPU time to do its work. The process splits up that time among
its threads. Each thread typically performs its own work and is as independent as
possible from the other threads within that process.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 94

An app can have multiple threads and the CPU switches between them:

If you go into the Xcode debugger and pause the app, the debugger will show you
which threads are currently active and what they were doing before you stopped
them.

For the StoreSearch app, there were apparently five threads at that time:

Most of these threads are managed by iOS itself and you don’t have to worry about
them (you may see less or more than five). However, there is one thread that
requires special care: the main thread. In the image above, that is Thread 1.

The main thread is the app’s initial thread and from there all the other threads are
spawned. The main thread is responsible for handling user interface events and also
for drawing the UI. Most of your app’s activities take place on the main thread.
Whenever the user taps a button in your app, it is the main thread that performs
your action method.

Because it’s so important, you should be careful not to hold up, or “block”, the main
thread. If your action method takes more than a fraction of a second to run, then
doing all these computations on the main thread is not a good idea for the reasons
you saw earlier.

The app becomes unresponsive because the main thread cannot handle any UI
events while you’re keeping it busy doing something else – and if the operation
takes too long the app may even be killed by the system.

In StoreSearch, you’re doing a lengthy network operation on the main thread. It
could potentially take many seconds, maybe even minutes, to complete.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 95

After you set the isLoading flag to true, you tell the tableView to reload its data so
that the user can see the spinning animation. But that never comes to pass. Telling
the table view to reload schedules a “redraw” event, but the main thread gets no
chance to handle that event as you immediately start the networking operation,
keeping the main thread busy all the time.

This is why I said the current synchronous approach to doing networking was bad:
Never block the main thread. It’s one of the deadly sins of iOS programming!

Making it asynchronous
To prevent locking up the main thread, any operation that might take a while to
complete should be asynchronous. That means the operation happens off in the
background somewhere and in the mean time the main thread is free to process
new events.

That is not to say you should create your own thread. If you’ve programmed on
other platforms before you may not think twice about creating new threads, but on
iOS that is often not the best solution.

You see, threads are tricky. Not threads per se, but doing things in parallel. Our
human minds are very bad at handling the complexity that comes from doing more
than one thing at a time – at least when it comes to computations.

I won’t go into too much detail here, but generally you want to avoid the situation
where two threads are modifying the same piece of data at the same time. That can
lead to very surprising (but not very pleasant!) results.

Rather than making your own threads, iOS has several more convenient ways to
start background processes. For this app you’ll be using queues and Grand
Central Dispatch (or GCD). GCD greatly simplifies tasks that require parallel
programming. You’ve already briefly played with GCD in the MyLocations tutorial,
but now you’ll put it to real use.

In short, GCD has a number of queues with different priorities. To perform a job in
the background, you put it in a closure and then give that closure to a queue and
forget about it. It’s as simple as that.

GCD will pull the closures – or “blocks” as it calls them – from the queues one-by-
one and perform their code in the background. Exactly how it does that is not
important, you’re only guaranteed it happens on a background thread somewhere.
Queues are not exactly the same as threads, but they use threads to do their dirty
work.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 96

Queues have a list of closures to perform on a background thread

To make the web service requests asynchronous, you’re going to put the
networking part from searchBarSearchButtonClicked() into a closure and then place
that closure on a medium priority queue.

➤ Change searchBarSearchButtonClicked() to the following:

func searchBarSearchButtonClicked(_ searchBar: UISearchBar) {
 if !searchBar.text!.isEmpty {
 searchBar.resignFirstResponder()

 isLoading = true
 tableView.reloadData()

 hasSearched = true
 searchResults = []

 // 1
 let queue = DispatchQueue.global()
 // 2
 queue.async {
 let url = self.iTunesURL(searchText: searchBar.text!)

 if let jsonString = self.performStoreRequest(with: url),
 let jsonDictionary = self.parse(json: jsonString) {

 self.searchResults = self.parse(dictionary: jsonDictionary)
 self.searchResults.sort(by: <)
 // 3
 print("DONE!")
 return
 }

 print("Error!")
 }
 }
}

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 97

Here is the new stuff:

1. This gets a reference to the queue. You’re using a “global” queue, which is a
queue provided by the system. You can also create your own queues, but using
a standard queue is fine for this app.

2. Once you have the queue, you can dispatch a closure on it:

queue.async {
 // this is the closure
}

The closure, as usual, is everything between the { and } symbols. Whatever code is
in the closure will be put on the queue and be executed asynchronously in the
background. After scheduling this closure, the main thread is immediately free to
continue. It is no longer blocked.

3. Inside the closure I have removed the code that reloads the table view after the
search is done, as well as the error handling code. For now this has been
replaced by print() statements. There is a good reason for this that we’ll get to
in a second. First let’s try the app again.

➤ Run the app and do a search. The “Loading…” cell should be visible – complete
with animating spinner! After a short while you should see the “DONE!” message
appear in the debug pane.

Of course, the Loading… cell sticks around forever because you haven’t told it yet to
go away.

The reason I removed all the user interface code from the closure is that UIKit has
a rule that UI code should always be performed on the main thread. This is
important!

Accessing the same data from multiple threads can create all sorts of misery, so the
designers of UIKit decided that changing the UI from other threads would not be
allowed. That means you cannot reload the table view from within this closure,
because it runs on a queue that is backed by a thread other than the main thread.

As it happens, there is also a so-called “main queue” that is associated with the
main thread. If you need to do anything on the main thread from a background
queue, you can simply create a new closure and schedule that on the main queue.

➤ Replace the line that says print("DONE!") with:

DispatchQueue.main.async {
 self.isLoading = false
 self.tableView.reloadData()
}

With DispatchQueue.main.async you can schedule a new closure on the main queue.
This new closure sets isLoading back to false and reloads the table view. Note that

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 98

self is required because this code sits inside a closure.

➤ Replace the line that says print("Error!") with:

DispatchQueue.main.async {
 self.showNetworkError()
}

You also schedule the call to showNetworkError() on the main queue. That method
shows a UIAlertController, which is UI code and therefore needs to happen on the
main thread.

➤ Try it out. With those changes in place, your networking code no longer occupies
the main thread and the app suddenly feels a lot more responsive!

When working with GCD queues you will often see this pattern:

let queue = DispatchQueue.global()
queue.async {
 // code that needs to run in the background

 DispatchQueue.main.async {
 // update the user interface
 }
}

There is also queue.sync, without the “a”, which takes the next closure from the
queue and performs it in the background, but makes you wait until that closure is
done. That can be useful in some cases but most of the time you’ll want to use
queue.async. No one likes to wait!

➤ I think with this important improvement the app deserves a new version number,
so commit the changes and create a tag for v0.2.

You can find the project files for this section under 04 - Async Networking in the
tutorial’s Source Code folder.

URLSession
So far you’ve used the String(contentsOf, encoding) method to perform the search
on the iTunes web service. That is great for simple apps, but I want to show you
another way to do networking that is more powerful.

iOS itself comes with a number of different classes for doing networking, from low-
level sockets stuff that is only interesting to really hardcore network programmers,
to convenient classes such as URLSession.

In this section you’ll replace the existing networking code with the URLSession API.
That is the API the pros use for building real apps, but don’t worry, it’s not more
difficult than what you’ve done before – just more powerful.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 99

Branch it
Whenever you make a big change to the code, such as replacing all the networking
stuff with URLSession, there is a possibility that you’ll mess things up. I certainly do
often enough! That’s why it’s smart to create a so-called Git branch first.

The Git repository contains a history of all the app’s code, but it can also contain
this history along different paths.

You just finished the first version of the networking code and it works pretty well.
Now you’re going to completely replace that with a – hopefully! – better solution. In
doing so, you may want to commit your progress at several points along the way.

What if it turns out that switching to URLSession wasn’t such a good idea after all?
Then you’d have to restore the source code to a previous commit from before you
started making those changes. In order to avoid this potential mess, you can make
a branch instead.

Branches in action

Every time you’re about to add a new feature to your code or have a bug to fix, it’s
a good idea to make a new branch and work on that. When you’re done and are
satisfied that everything works as it should, merge your changes back into the
master branch. Different people use different branching strategies but this is the
general principle.

So far you have been committing your changes to the “master” branch. Now you’re
going to make a new branch, let’s call it “urlsession”, and commit your changes to
that. When you’re done with this new feature you will merge everything back into
the master branch.

You can find the branches for your repository in the Source Control menu:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 100

The Source Control branch menu

➤ Select StoreSearch – master (the name of the active branch), and choose
Configure StoreSearch… to bring up the following panel:

There is currently only one branch in the repository

➤ Go to the Branches tab and click the + button at the bottom. In the screen that
appears, type urlsession for the branch name and click Create.

Creating a new branch

When Xcode is done, you’ll see that a new “urlsession” branch has been added and
that it is made the current one.

This new branch contains the exact same source code and history as the master
branch. But from here on out the two paths will diverge – any changes you make
happen on the “urlsession” branch only.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 101

Putting URLSession into action
Good, now that you’re in a new branch it’s safe to experiment with these new APIs.

➤ First, remove the performStoreRequest(with) method from
SearchViewController.swift. Yup, that’s right, you won’t be needing it anymore.

Don’t be afraid to remove old code. Some developers only comment out the old
code but leave it in the project, just in case they may need it again some day.

You don’t have to worry about that because you’re using source control. Should you
really need it, you can always find the old code in the Git history. Besides, if the
experiment should fail, you can simply throw away this branch and switch back to
the “official” one.

Anyway, on to URLSession. This is a closured-based API, meaning that instead of
making a delegate, you give it a closure containing the code that should be
performed once the response from the server has been received. URLSession calls
this closure the “completion handler”.

➤ Change searchBarSearchButtonClicked() to the following:

func searchBarSearchButtonClicked(_ searchBar: UISearchBar) {
 if !searchBar.text!.isEmpty {
 searchBar.resignFirstResponder()

 isLoading = true
 tableView.reloadData()

 hasSearched = true
 searchResults = []

 // 1
 let url = iTunesURL(searchText: searchBar.text!)
 // 2
 let session = URLSession.shared
 // 3
 let dataTask = session.dataTask(with: url, completionHandler: {
 data, response, error in
 // 4
 if let error = error {
 print("Failure! \(error)")
 } else {
 print("Success! \(response!)")
 }
 })
 // 5
 dataTask.resume()
 }
}

This is what the changes do:

1. Create the URL object with the search text like before.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 102

2. Obtain the URLSession object. This grabs the standard “shared” session, which
uses a default configuration with respect to caching, cookies, and other web
stuff.

If you want to use a different configuration – for example, to restrict networking
to when Wi-Fi is available but not when there is only cellular access – then you
have to create your own URLSessionConfiguration and URLSession objects. But
for this app the default one will be fine.

3. Create a data task. Data tasks are for sending HTTPS GET requests to the
server at url. The code from the completion handler will be invoked when the
data task has received the reply from the server.

4. Inside the closure you’re given three parameters: data, response, and error.
These are all optionals so they can be nil and have to be unwrapped before you
can use them.

If there was a problem, error contains an Error object describing what went
wrong. This happens when the server cannot be reached or the network is down
or some other hardware failure.

If error is nil, the communication with the server succeeded; response holds
the server’s response code and headers, and data contains the actual thing that
was sent back from the server, in this case a blob of JSON.

For now you simply use a print() to show success or failure.

5. Finally, once you have created the data task, you need to call resume() to start
it. This sends the request to the server. That all happens on a background
thread, so the app is immediately free to continue (URLSession is as
asynchronous as they come).

With those changes made, you can run the app and see what URLSession makes of
it.

➤ Run the app and search for something. After a second or two you should see the
debug output say “Success!” followed by a dump of the HTTP response headers.

Excellent!

A brief review of closures
You’ve seen closures a few times now. They are a really powerful feature of Swift
and you can expect to be using them all the time when you’re working with Swift
code. So it’s good to have at least a basic understanding of how they work.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 103

A closure is simply a piece of source code that you can pass around just like any
other type of object. The difference between a closure and regular source code is
that the code from the closure does not get performed right away. It is stored in a
“closure object” and can be performed at a later point, even more than once.

That’s exactly what URLSession does: it keeps hold of the “completion handler”
closure and only performs it when a response is received from the web server or
when a network error occurs.

A closure typically looks like this:

let dataTask = session.dataTask(with: url, completionHandler: {
 data, response, error in
 . . . source code . . .
})

The thing behind completionHandler inside the { } brackets is the closure. The form
of a closure is always:

{ parameters in
 your source code
}

or without parameters:

{
 your source code
}

Just like a method or function, a closure can accept parameters. They are separated
from the source code by the “in” keyword. In URLSession’s completion handler the
parameters are data, response, and error.

Thanks to Swift’s type inference you don’t need to specify the data types of the
parameters. However, you could write them out in full if you wanted to:

let dataTask = session.dataTask(with: url, completionHandler: {
 (data: Data?, response: URLResponse?, error: Error?) in
 . . .
})

Tip: For a parameter without a type annotation, you can Option-click to find out
what its type is. This trick works for any symbol in your programs.

If you don’t care about a particular parameter you can substitute it with _, the
wildcard symbol:

let dataTask = session.dataTask(with: url, completionHandler: {
 data, _, error in
 . . .
})

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 104

If a closure is really simple, you can leave out the parameter list altogether and use
$0, $1, and so on as the parameter names.

let dataTask = session.dataTask(with: url, completionHandler: {
 print("My parameters are \($0), \($1), \($2)")
})

You wouldn’t do that with URLSession’s completion handler, though. It’s much easier
if you know the parameters are called data, response, and error than remembering
what $0, $1, and $2 stand for.

If a closure is the last parameter of a method, you can use trailing syntax to
simplify the code a little:

let dataTask = session.dataTask(with: url) {
 data, response, error in
 . . .
}

Now the closure sits behind the closing parenthesis, not inside. Many people, myself
included, find this more natural to read.

Closures are useful for other things too, such as initializing objects and lazy
loading:

lazy var dateFormatter: DateFormatter = {
 let formatter = DateFormatter()
 formatter.dateStyle = .medium
 formatter.timeStyle = .short
 return formatter
}()

The code to create and initialize the DateFormatter object sits inside a closure. The
() at the end causes the closure to be evaluated and the returned object is put
inside the dataFormatter variable. This is a common trick for placing complex
initialization code right next to the variable declaration.

It’s no coincidence that closures look a lot like functions. In Swift closures, methods
and functions are really all the same thing. For example, you can supply the name
of a method or function when a closure is expected, as long as the parameters
match:

let dataTask = session.dataTask(with: url,
 completionHandler: myCompletionHandlerMethod)
. . .

func myCompletionHandlerMethod(data: Data?, response: URLResponse?,
 error: Error?) {
 . . .
}

That somewhat negates one of the prime benefits of closures – keeping all the code

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 105

in the same place – but there are situations where this is quite useful (the method
acts as a “mini” delegate.)

One final thing to be aware of with closures is that they capture any variables used
inside the closure, including self. This can create ownership cycles, often leading to
memory leaks. To avoid this, you can supply a capture list:

let dataTask = session.dataTask(with: url) {
 [weak self] data, response, error in
 . . .
}

Whenever you access an instance variable or call a method, you’re implicitly using
self. Inside a closure, however, Swift requires that you always write “self.” in front
of the method call or instance variable. This makes it clear that self is being
captured by the closure:

let dataTask = session.dataTask(with: url) {
 data, response, error in
 self.callSomeMethod() // self is required
}

SearchViewController doesn’t have to worry about URLSession capturing self
because the data task is only short-lived, while the view controller sticks around for
as long as the app itself. This ownership cycle is quite harmless. Later on in the
tutorial you will have to use [weak self] with URLSession or the app might crash
and burn!

Note: Swift also has the concept of “no escape” closures. We won’t go into that
here, except to mention that no-escape closures don’t capture self, so you don’t
have to write “self.” everywhere. Nice, but you can only use such closures under
very specific circumstances!

After a successful request, the app prints the HTTP response from the server. The
response object might look something like this:

Success! <NSHTTPURLResponse: 0x7f8b19e38d10> { URL: https://
itunes.apple.com/search?term=metallica&limit=200 } {
status code: 200, headers {
 "Cache-Control" = "no-transform, max-age=41";
 Connection = "keep-alive";
 "Content-Encoding" = gzip;
 "Content-Length" = 34254;
 "Content-Type" = "text/javascript; charset=utf-8";
 Date = "Fri, 21 Aug 2015 09:53:20 GMT";
 . . .

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 106

} }

If you’ve done any web development before, this should look familiar. These “HTTP
headers” are always the first part of the response from a web server that precedes
the actual data you’re receiving. The headers give additional information about the
communication that just happened.

What you’re especially interested in is the status code. The HTTP protocol has
defined a number of status codes that tell clients whether the request was
successful or not. No doubt you’re familiar with 404, web page not found.

The status code you want to see is 200 OK, which indicates success. (Wikipedia has
the complete list of codes, wikipedia.org/wiki/List_of_HTTP_status_codes.)

To make the error handling of the app a bit more robust, let’s check to make sure
the HTTP response code really was 200. If not, something has gone wrong and we
can’t assume that data contains the JSON we’re after.

➤ Change the contents of the completionHandler to:

if let error = error {
 print("Failure! \(error)")
} else if let httpResponse = response as? HTTPURLResponse,
 httpResponse.statusCode == 200 {
 print("Success! \(data!)")
} else {
 print("Failure! \(response)")
}

The response parameter has the data type URLResponse but that doesn’t have a
property for the status code. Because you’re using the HTTP protocol, what you’ve
really received is an HTTPURLResponse object, a subclass of URLResponse.

So first you cast it to the proper type and then look at its statusCode property. Only
if it is 200 you’ll consider the job a success.

Notice the use of the comma inside the if let statement to combine these checks
into a single line. You could also have written it with a second if, but I find that
harder to read:

} else if let httpResponse = response as? HTTPURLResponse {
 if httpResponse.statusCode == 200 {
 print("Success! \(data!)")
 }

Whenever you need to unwrap an optional and also check the value of that
optional, using if let …, … is the nicest way to do that.

➤ Run the app and search for something. You should now see something like:

Success! <0a0a0a7b 0a202272 6573756c 74436f75 6e74223a 3230302c 0a202272
6573756c 7473223a 205b0a7b 22777261 70706572 54797065 223a2274 7261636b

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 107

222c2022 6b696e64 223a2266 65617475 72652d6d 6f766965 222c2022 74726163
6b496422 3a353338 38303035 39382c20 22617274 6973744e 616d6522 3a224c69
. . .

This is the data object with the JSON search results. The JSON is really text but
because data is in the form of a Data object it prints out its contents as binary
(hexadecimal to be precise). In a minute you’ll turn this into real JSON objects.

It’s always a good idea to actually test your error handling code, so let’s first fake
an error and get that out of the way.

➤ In iTunesURL(searchText), change the string to:

"https://itunes.apple.com/searchLOL?term=%@&limit=200"

Here I’ve changed the endpoint from search to searchLOL. It doesn’t really matter
what you type there, as long as it’s something that cannot possibly exist on the
iTunes server.

➤ Run the app again. Now a search should respond with something like this:

Failure! <NSHTTPURLResponse: 0x7ff76b42d4b0> { URL: https://
itunes.apple.com/searchLOL?term=metallica&limit=200 } {
status code: 404, headers {
 Connection = "keep-alive";
 "Content-Length" = 207;
 "Content-Type" = "text/html; charset=iso-8859-1";
 . . .
} }

As you can see, the status code is now 404 – there is no searchLOL page – and the
app correctly considers this a failure. That’s a good thing too, because data now
contains the following:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>404 Not Found</title>
</head><body>
<h1>Not Found</h1>
<p>The requested URL /searchLOL was not found on this server.</p>
</body></html>

That is definitely not JSON but HTML. If you tried to convert that into JSON objects,
you’d fail horribly.

Great, so the error handling works. Let’s add JSON parsing to the code.

➤ First, put iTunesURL(searchText) back to the way it was (⌘+Z to undo).

➤ Then change parse(json) to the following:

func parse(json data: Data) -> [String: Any]? {
 do {

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 108

 return try JSONSerialization.jsonObject(with: data, options: [])
 as? [String: Any]
 } catch {
 print("JSON Error: \(error)")
 return nil
 }
}

You removed the guard statement and changed the parameter from String to Data.

Previously this method took a String object and converted it into a Data object that
it passed to JSONSerialization.jsonObject(…). Now you already have the JSON text
in a Data object, so you no longer have to bother with the string.

The app is not doing anything yet with the search results, but you already wrote all
the code you need for that before, so let’s put it in the closure.

➤ In the completionHandler, replace the print("Success! \(data)") line with:

if let data = data, let jsonDictionary = self.parse(json: data) {
 self.searchResults = self.parse(dictionary: jsonDictionary)
 self.searchResults.sort(by: <)

 DispatchQueue.main.async {
 self.isLoading = false
 self.tableView.reloadData()
 }
 return
}

This unwraps the optional object from the data parameter and gives it to
parse(json) to convert it into a dictionary. Then it calls parse(dictionary) to turn
the dictionary’s contents into SearchResult objects, just like you did before. Finally,
you sort the results and put everything into the table view. This should look very
familiar.

It’s important to realize that the completion handler closure won’t be performed on
the main thread. Because URLSession does all the networking asynchronously, it will
also call the completion handler on a background thread.

Parsing the JSON and sorting the list of search results could potentially take a while
(not seconds but possibly long enough to be noticeable). You don’t want to block
the main thread while that is happening, so it’s preferable that this happens in the
background too.

But when the time comes to update the UI, you need to switch back to the main
thread. Them’s the rules. That’s why you wrap the reloading of the table view into
DispatchQueue.main.async on the main queue.

If you forget to do this, your app may still appear to work. That’s the insidious thing
about working with multiple threads. However, it may also crash in all kinds of
mysterious ways. So remember, UI stuff should always happen on the main thread.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 109

Write it on a Post-It note and stick it to your screen!

➤ Run the app. The search should work again. You have successfully replaced the
old networking code with URLSession!

Tip: To tell whether a particular piece of code is being run on the main thread,
add the following code snippet:
print("On main thread? " + (Thread.current.isMainThread ? "Yes" : "No"))

Go ahead, paste this at the top of the completionHandler closure and see what
it says.

Of course, the official framework documentation should be your first stop.
Usually when a method takes a closure the docs mention whether it is
performed on the main thread or not. But if you’re not sure, or just can’t find
it in the docs, add the above print() and be enlightened.

➤ At the very bottom of the completion handler closure, below the if-statements,
add the following:

DispatchQueue.main.async {
 self.hasSearched = false
 self.isLoading = false
 self.tableView.reloadData()
 self.showNetworkError()
}

The code gets here if something went wrong. You call showNetworkError() to let the
user know about the problem.

Note that you do tableView.reloadData() here too, because the contents of the
table view need to be refreshed to get rid of the Loading… indicator. And of course,
all this happens on the main thread.

Exercise. Why doesn’t the error alert show up on success? After all, the above
piece of code sits at the bottom of the closure, so doesn’t it always get executed?

Answer: Upon success, the return statement exits the closure after the search
results get displayed in the table view. So in that case execution never reaches the
bottom of the closure.

➤ Fake an error situation to test that the error handling code really works.

Testing errors is not a luxury! The last thing you want is your app to crash when a
networking error occurs because of faulty error handling code. I’ve worked on
codebases where it was obvious the previous developer never bothered to verify
that the app was able to recover from errors. (That’s probably why they were the
previous developers.)

Things will go wrong in the wild and your app better be prepared to deal with it. As

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 110

the MythBusters say, “failure is always an option”.

Does the error handling code work? Great! Time to add some new networking
features to the app.

➤ This is a good time to commit your changes. Remember, this commit only
happens on the "urlsession" branch, not on the master branch.

Canceling operations
What happens when a search takes very long and the user already starts a second
search when the first one is still going? The app doesn’t disable the search bar so
it’s possible for the user to pull this off. When dealing with networking – or any
asynchronous process, really – you have to think these kinds of situations through.

There is no way to predict what happens, but it will most likely be a strange
experience for the user. She might see the results from her first search, which she
is no longer expecting (confusing!), only to be replaced by the results of the second
search a few seconds later.

But there is no guarantee the first search completes before the second, so the
results from search 2 may arrive first and then get overwritten by the results from
search 1, which is definitely not what the user wanted to see either.

Because you’re no longer blocking the main thread, the UI always accepts user
input, and you cannot assume the user to sit still and wait until the request is done.

You can usually fix this dilemma in one of two ways:

1. Disable all controls. The user cannot tap anything while the operation is taking
place. This does not mean you’re blocking the main thread; you’re just making
sure the user cannot mess up the order of things.

2. Cancel the on-going request when the user starts a new one.

For this app you’re going to pick the second solution because it makes for a nicer
user experience. Every time the user performs a new search you cancel the
previous request. URLSession makes this easy: data tasks have a cancel() method.

When you created the data task, you were given a URLSessionDataTask object, and
you placed this into the local constant named dataTask. Cancelling the task,
however, needs to happen the next time searchBarSearchButtonClicked() is called.

Storing the URLSessionDataTask object into a local variable isn’t good enough
anymore; you need to keep that reference beyond the scope of this method. In
other words, you have to put it into an instance variable.

➤ Add the following instance variable to SearchViewController.swift:

var dataTask: URLSessionDataTask?

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 111

This is an optional because you won’t have a data task yet until the user performs a
search.

➤ Inside searchBarSearchButtonClicked(), remove let from the line that creates
the new data task object:

dataTask = session.dataTask(with: url, completionHandler: {

You’ve removed the let keyword because dataTask should no longer be a local; it
now refers to the instance variable.

➤ At the bottom of the method, add a question mark to the line that starts the
task:

dataTask?.resume()

Because dataTask is an optional, you have to unwrap the optional somehow before
you can use it. Here you’re using optional chaining.

➤ Finally, near the top of the method before you set isLoading to true, add:

dataTask?.cancel()

If there was an active data task this cancels it, making sure that no old searches
can ever get in the way of the new search.

Thanks to the optional chaining, if no search was done yet and dataTask is still nil,
this simply ignores the call to cancel(). You could also unwrap the optional with if
let, but using the question mark is shorter and just as safe.

Exercise. Why can’t you write dataTask!.cancel() to unwrap the optional?

Answer: If an optional is nil, using ! will crash the app. You’re only supposed to
use ! to unwrap an optional when you’re sure it won’t be nil. But the very first
time the user types something into the search bar, dataTask will still be nil and
using ! is not a good idea.

➤ Test the app with and without this call to dataTask.cancel() to experience the
difference.

Use the Network Link Conditioner preferences pane to delay each query by a few
seconds so it’s easier to get two requests running at the same time.

Hmm… you may have noticed something odd. When the data task gets cancelled,
you get the error popup and the Debug pane says:

Failure! Error Domain=NSURLErrorDomain Code=-999 "cancelled" UserInfo= …
{NSErrorFailingURLKey=https://itunes.apple.com/search?term=monkeys&
limit=200, NSLocalizedDescription=cancelled, NSErrorFailingURLStringKey=

As it turns out, when a data task gets cancelled its completion handler is still

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 112

invoked but with an Error object that has error code -999. That’s what caused the
error alert to pop up.

You’ll have to make the error handler a little smarter to ignore code -999. After all,
the user cancelling the previous search is no cause for panic.

➤ In the completionHandler, change the if let error section to:

if let error = error as? NSError, error.code == -999 {
 return // Search was cancelled
} else if let httpResponse = . . .

This simply ends the closure when there is an error with code -999. The rest of the
closure gets skipped.

➤ If you’re satisfied it works, commit the changes to the repository.

Note: Maybe you don’t think it’s worth making a commit when you’ve only
changed a few lines, but many small commits are often better than a few big
ones. Each time you fix a bug or add a new feature is a good time to commit.

Searching different categories
The iTunes store has a vast collection of products and each search returns at most
200 items. It can be hard to find what you’re looking for by name alone, so you’ll
add a control to the screen that lets users pick the category they want to search in.
It looks like this:

Searching in the Software category

This type of control is called a segmented control and is used to pick one option
out of multiple choices.

➤ Open the storyboard. Drag a new Navigation Bar into the view and put it below
the Search Bar. You’re using the Navigation Bar purely for decorative purposes, as a
container for the segmented control.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 113

Make sure the Navigation Bar doesn’t get added inside the Table View. It may be
easiest to drag it from the Object Library directly into the outline pane and drop it
below the Search Bar. Then change its Y-position to 64.

➤ With the Navigation Bar selected, open the Pin menu and pin its top, left, and
right sides.

➤ Drag a new Segmented Control from the Object Library on top of the
Navigation Bar’s title (so it will replace the title).

The design now looks like this:

The Segmented Control sits in a Navigation Bar below the Search Bar

➤ Select the Segmented Control. Set its Width to 300 points (make sure you
change the width of the entire control, not of the individual segments).

➤ In the Attributes inspector, set the number of segments to 4.

➤ Change the title of the first segment to All. Then select the second segment and
set its title to Music. The title for the third segment should be Software and the
fourth segment is E-books.

You can change the segment title by double-clicking inside the segment or inside
the Attributes inspector.

The scene should look like this now:

The finished Segmented Control

Next you’ll add a new outlet and action method for the Segmented Control. This is a
good opportunity to practice using the Assistant editor.

➤ Press Option+⌘+Enter to open the Assistant editor and then Ctrl-drag from the

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 114

Segmented Control into the view controller source code to add the new outlet:

@IBOutlet weak var segmentedControl: UISegmentedControl!

To add the action method you can also use the Assistant editor. Ctrl-drag from the
Segmented Control into the source code again, but this time choose:

Adding an action method for the segmented control

• Connection: Action

• Name: segmentChanged

• Type: UISegmentedControl

• Event: Value Changed

• Arguments: Sender

➤ Press Connect to add the action method. Also add a print() statement to it:

@IBAction func segmentChanged(_ sender: UISegmentedControl) {
 print("Segment changed: \(sender.selectedSegmentIndex)")
}

Type ⌘+Enter (without Option) to close the Assistant editor again. These are very
handy keyboard shortcuts to remember.

➤ Run the app to make sure everything still works. Tapping a segment should log a
number (the index of that segment) to the debug pane.

The segmented control in action

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 115

Notice that the first row of the table view is partially obscured again. Because you
placed a navigation bar below the search bar, you need to add another 44 points to
the table view’s content inset.

➤ Change that line in viewDidLoad() to:

tableView.contentInset = UIEdgeInsets(top: 108, left: 0, . . .

You will be using the segmented control in two ways. First of all, it determines what
sort of products the app will search for. Second, if you have already performed a
search and you tap on one of the other segment buttons, the app will search again
for that new product category.

That means a search can now be triggered by two different events: tapping the
Search button on the keyboard and tapping in the Segmented Control.

➤ Rename the searchBarSearchButtonClicked() method to performSearch() and
also remove the searchBar parameter.

You’re doing this to put the search logic into a separate method that can be invoked
from more than one place. Removing searchBar as the parameter of this method is
no problem because there is also an @IBOutlet instance variable with that name
and performSearch() will simply use that.

➤ Now add a new version of searchBarSearchButtonClicked() back into the source
code:

func searchBarSearchButtonClicked(_ searchBar: UISearchBar) {
 performSearch()
}

➤ Also replace the segmentChanged() action method with:

@IBAction func segmentChanged(_ sender: UISegmentedControl) {
 performSearch()
}

➤ Run the app and verify that searching still works. When you tap on the different
segments the search should be performed again as well.

Note: The second time you search for the same thing the app may return
results very quickly. The networking layer is now returning a cached response
so it doesn’t have to download the whole thing again, which is usually a
performance gain on mobile devices. (There is an API to turn off this caching
behavior if that makes sense for your app.)

You still have to tell the app to use the category from the selected segment for the
search. You’ve already seen that you can get the index of the selected segment
with the selectedSegmentIndex property. This returns an Int value (0, 1, 2, or 3).

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 116

➤ Change the iTunesURL(searchText) method so that it accepts this Int as a
parameter and then builds up the request URL accordingly:

func iTunesURL(searchText: String, category: Int) -> URL {
 let entityName: String
 switch category {
 case 1: entityName = "musicTrack"
 case 2: entityName = "software"
 case 3: entityName = "ebook"
 default: entityName = ""
 }

 let escapedSearchText = searchText.addingPercentEncoding(
 withAllowedCharacters: CharacterSet.urlQueryAllowed)!

 let urlString = String(format:
 "https://itunes.apple.com/search?term=%@&limit=200&entity=%@",
 escapedSearchText, entityName)

 let url = URL(string: urlString)
 return url!
}

This first turns the category index from a number into a string, entityName. (Note
that the category index is passed to the method as a new parameter.)

Then it puts this string behind the &entity= parameter in the URL. For the “All”
category, the entity value is empty but for the other categories it is “musicTrack”,
“software”, and “ebook”, respectively.

➤ In the performSearch() method, change the line that used to call iTunesURL()
into the following:

let url = self.iTunesURL(searchText: searchBar.text!,
 category: segmentedControl.selectedSegmentIndex)

And that should do it.

Note: You could have used segmentedControl.selectedSegmentIndex directly
inside iTunesURL(…) instead of passing the category index as a parameter.
Using the parameter is the better design, though. It makes it possible to reuse
the same method with a different type of control, should you decide that a
Segmented Control isn’t really the right component for this app. It is always a
good idea to make methods as independent from each other as possible.

➤ Run the app and search for “stephen king”. In the All category that gives results
for anything from movies to podcasts to audio books. In the Music category it
matches mostly artists with the word “King” in their name. There doesn’t seem to
be a lot of Stephen King-related software, but in the E-Books category you finally
find some of his novels.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 117

You can now limit the search to just e-books

This finalizes the UI design of the main screen. This is as good a point as any to
replace the empty white launch file from the template.

➤ Remove the LaunchScreen.storyboard file from the project.

➤ In the Project Settings screen, under App Icons and Launch Images,
change Launch Screen File to Main.storyboard.

Now when the app starts up it uses the initial view controller from the storyboard
as the launch image. Also verify that the app works properly on the iPad simulator
and the larger iPhone 6s, 7, and Plus models.

➤ Commit the changes and get ready for some more networking!

Downloading the artwork images
The JSON search results contain a number of URLs to images and you put two of
those – artworkSmallURL and artworkLargeURL – into the SearchResult object. Now
you are going to download these images over the internet and put them into the
table view cells.

Downloading images, just like using a web service, is simply a matter of doing an
HTTP GET request to a server that is connected to the internet. An example of such
a URL is:

http://a5.mzstatic.com/us/r30/Music/5c/16/8d/mzi.ezpjahaj.100x100-75.jpg

Click that link and it will open the picture in a new web browser window. The server
where this picture is stored is not itunes.apple.com but a5.mzstatic.com, but that
doesn’t matter anything to the app.

As long as it has a valid URL, the app will just go fetch the file at that location, no
matter where it is and no matter what kind of file that is.

There are various ways that you can download files from the internet. You’re going
to use URLSession and write a handy UIImageView extension to make this really

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 118

convenient. Of course, you’ll be downloading these images asynchronously!

First, you will move the logic for configuring the contents of the table view cells into
the SearchResultCell class. That’s a better place for it. Logic related to an object
should live inside that object as much as possible, not somewhere else.

Many developers have a tendency to stuff everything into their view controllers, but
if you can move some of the logic into other objects that makes for a much cleaner
program.

➤ Add the following method to SearchResultCell.swift:

func configure(for searchResult: SearchResult) {
 nameLabel.text = searchResult.name

 if searchResult.artistName.isEmpty {
 artistNameLabel.text = "Unknown"
 } else {
 artistNameLabel.text = String(format: "%@ (%@)",
 searchResult.artistName, kindForDisplay(searchResult.kind))
 }
}

This is the same as what you used to do in tableView(cellForRowAt). The only
problem is that this class doesn’t have the kindForDisplay() method yet.

➤ Cut the kindForDisplay() method out of SearchViewController.swift and paste
it into SearchResultCell.swift.

It’s easy to move this method from one class to another because it doesn’t depend
on any instance variables. It is completely self-contained. You should strive to write
your methods in that fashion as much as possible.

➤ Finally, change tableView(cellForRowAt) to the following:

func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 if isLoading {
 . . .
 } else if searchResults.count == 0 {
 . . .
 } else {
 let cell = tableView.dequeueReusableCellWithIdentifier(. . .)

 let searchResult = searchResults[indexPath.row]
 cell.configure(for: searchResult) // change this line
 return cell
 }
}

This small refactoring of moving some code from one class (SearchViewController)
into another (SearchResultCell) was necessary to make the next bit work right.

In hindsight, it makes more sense to do this sort of thing in SearchResultCell

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 119

anyway, but until now it did not really matter. Don’t be afraid to refactor your code!
(Remember, if you screw up you can always go back to the Git history.)

➤ Run the app to make sure everything still works as before.

OK, here comes the cool part. You will now make an extension for UIImageView that
loads the image and automatically puts it into the image view on the table view cell
with just one line of code.

As you know, an extension can be used to extend the functionality of an existing
class without having to subclass it. This works even for classes from the system
frameworks.

UIImageView doesn’t have built-in support for downloading images, but this is a very
common thing to do in apps. It’s great that you can simply plug in your own
extension – and from then on every UIImageView in your app has this new ability.

➤ Add a new file to the project using the Swift File template, and name it
UIImageView+DownloadImage.swift.

➤ Replace the contents of this new file with the following:

import UIKit

extension UIImageView {
 func loadImage(url: URL) -> URLSessionDownloadTask {
 let session = URLSession.shared
 // 1
 let downloadTask = session.downloadTask(with: url,
 completionHandler: { [weak self] url, response, error in
 // 2
 if error == nil, let url = url,
 let data = try? Data(contentsOf: url), // 3
 let image = UIImage(data: data) {
 // 4
 DispatchQueue.main.async {
 if let strongSelf = self {
 strongSelf.image = image
 }
 }
 }
 })
 // 5
 downloadTask.resume()
 return downloadTask
 }
}

This should look very similar to what you did before with URLSession, but there are
some differences:

1. After obtaining a reference to the shared URLSession, you create a download
task. This is similar to a data task but it saves the downloaded file to a
temporary location on disk instead of keeping it in memory.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 120

2. Inside the completion handler for the download task you’re given a URL where
you can find the downloaded file (this URL points to a local file rather than an
internet address). Of course, you must also check that error is nil before you
continue.

3. With this local URL you can load the file into a Data object and then make an
image from that. It’s possible that constructing the UIImage fails, when what you
downloaded was not a valid image but a 404 page or something else
unexpected. As you can tell, when dealing with networking code you need to
check for errors every step of the way!

4. Once you have the image you can put it into the UIImageView’s image property.
Because this is UI code you need to do this on the main thread.

Here’s the tricky thing: it is theoretically possible that the UIImageView no longer
exists by the time the image arrives from the server. After all, it may take a few
seconds and the user can still navigate through the app in the mean time.

That won’t happen in this part of the app because the image view is part of a
table view cell and they get recycled but not thrown away. But later in the
tutorial you’ll use this same code to load an image on a screen that may be
closed while the image file is still downloading. In that case you don’t want to
set the image if the UIImageView is not visible anymore.

That’s why the capture list for this closure includes [weak self], where self now
refers to the UIImageView. Inside the DispatchQueue.main.async you need to
check whether “self” still exists; if not, then there is no more UIImageView to set
the image on.

5. After creating the download task you call resume() to start it, and then return
the URLSessionDownloadTask object to the caller. Why return it? That gives the
app the opportunity to call cancel() on the download task. You’ll see how that
works in a minute.

And that’s all you need to do. From now on you can call loadImage(url) on any
UIImageView object in your project. Cool, huh!

Note: Swift lets you combine multiple if let statements into a single line, like
you did above:
if error == nil, let url = …, let data = …, let image = … {

There are three optionals being unwrapped here: 1) url, 2) the result from
Data(contentsOf), and 3) the result from UIImage(data).

You can write this as three separate if let statements, and one for if error
== nil, but I find that having everything inside a single if-statement is easier
to read than many nested if-statements spread over several lines.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 121

➤ Switch to SearchResultCell.swift and add the following lines to the bottom of
configure(for):

artworkImageView.image = UIImage(named: "Placeholder")
if let smallURL = URL(string: searchResult.artworkSmallURL) {
 downloadTask = artworkImageView.loadImage(url: smallURL)
}

This tells the UIImageView to load the image from artworkSmallURL and to place it in
the cell’s image view. While the real artwork is downloading the image view displays
a placeholder image (the same one from the nib for this cell).

The URLSessionDownloadTask object returned by loadImage(url) is placed in a new
instance variable, downloadTask. You still need to add this instance variable:

var downloadTask: URLSessionDownloadTask?

➤ Run the app and look at that… error message?!

The Debug pane now says something like this:

App Transport Security has blocked a cleartext HTTP (http://) resource
load since it is insecure.

Remember how I said that as of iOS 9 you can no longer download files over HTTP
but that you always need to use HTTPS? Well, as it happens the iTunes web service
gives you image URLs that start with http://, not with https://. The server that
hosts those images apparently does not speak HTTPS at all, so URLSession cannot
use a secure connection and therefore the request fails.

Fortunately, you can add a key to the app’s Info.plist to bypass this App Transport
Security feature, allowing you to use plain http:// URLs.

➤ Open Info.plist and add a new row. Give it the key NSAppTransportSecurity
(or choose App Transport Security Settings) from the list).

➤ Make sure the Type is a Dictionary.

➤ Add a new key inside that dictionary named NSAllowsArbitraryLoads (or
choose Allow Arbitrary Loads from the list). Make this a Boolean and set it to
YES.

Overriding App Transport Security

➤ Run the app and look at those icons!

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 122

The app now downloads the album artwork

App Transport Security
You’re only supposed to bypass App Transport Security if there is absolutely no way
you can make the app work over HTTPS. If you’re making an app that talks to a
server you control, then the best thing to do is to enable HTTPS on the server, not
disable HTTPS in the app.

The Info.plist setting is only intended for when you need to communicate with other
people’s servers that do not speak HTTPS. Obviously, in that case the app should
not send sensitive data to those servers! Unprotected HTTP should only be used for
downloading publicly accessible data, such as images.

When you set the key NSAllowsArbitraryLoads to YES, the app can use any URL that
starts with http://, regardless of the domain. To allow HTTP on specific domains
only, set NSAllowsArbitraryLoads to NO and add a new dictionary named
NSExceptionDomains. Inside it you add a new dictionary for each domain.

For example, the iTunes web service appears to host all its preview images on the
website mzstatic.com. You could configure Info.plist as follows:

Now the app only allows http:// requests from mzstatic.com and any of its
subdomains, but requires https:// URLs for any other domains.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 123

Note that if you add these kinds of exceptions in your Info.plist, you’ll have to
explain to Apple why your app needs to make unsecure http:// connections.
Without a good reason, they may reject your app from the App Store!

These images already look pretty sweet, but you’re not quite done yet. Remember
that table view cells can be reused, so it’s theoretically possible that you’re scrolling
through the table and some cell is about to be reused while its previous image is
still loading.

You no longer need that image so you should really cancel the pending download.
Table view cells have a special method named prepareForReuse() that is ideal for
this.

➤ Add the following method to SearchResultCell.swift:

override func prepareForReuse() {
 super.prepareForReuse()

 downloadTask?.cancel()
 downloadTask = nil
}

Here you cancel any image download that is still in progress.

Exercise. Put a print() in the prepareForReuse() method and see if you can trigger
it.

On a decent Wi-Fi connection, loading the images is very fast. You almost cannot
see that it happens, even if you scroll quickly. It also helps that the image files are
small (only 60 by 60 pixels) and that the iTunes servers are fast.

That is key to having a snappy app: don’t download more data than you need to.

Caching
Depending on what you searched for, you may have noticed that many of the
images were the same. For example, my search for Duke Ellington’s music had
many identical album covers in the search results.

URLSession is smart enough not to download identical images – or at least images
with identical URLs – twice. That principle is called caching and it’s very important

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 124

on mobile devices.

Mobile developers are always trying to optimize their apps to do as little as
possible. If you can download something once and then use it over and over, that’s
a lot more efficient than re-downloading it all the time.

There’s more than just images that you can cache. You can also cache the results of
big computations, for example. Or views, as you have been doing in the previous
tutorials, probably without even realizing it. When you use the principle of lazy
loading, you delay the creation of an object until you need it and then you cache it
for the next time.

Cached data does not stick around forever. When your app gets a memory warning,
it’s a good idea to remove any cached data that you don’t need right away. That
means you will have to reload that data when you need it again later but that’s the
price you have to pay. (For URLSession this is completely automatic, so that takes
another burden off your shoulders.)

Some caches are in-memory only where the cached data stays in the computer’s
working memory, but it is also possible to cache the data in files on the disk. Your
app even has a special directory for it, Library/Caches.

The caching policy used by StoreSearch is very simple – it uses the default settings.
But you can configure URLSession to be much more advanced. Look into URLCache
and URLSessionConfiguration to learn more.

Merging the branch
This concludes the section on talking to the web service and downloading images.
Later on you’ll tweak the web service requests a bit more (to include the user’s
language and country) but for now you’re done with this feature.

I hope you got a good glimpse of what is possible with web services and how easy
it is to build this into your apps with a great library such as URLSession.

➤ Commit these latest changes to the repository.

Now that you’ve completed a feature, you can merge this temporary branch back
into the master branch. To do that, you first have to return to the master branch.

Merging is possible to do in Xcode but it’s not always the best experience. I will first
explain how to merge the branch using Xcode. If it doesn’t work and Xcode keeps
messing up your files, then skip ahead to the command line instructions. (It may be
a good idea to make a backup copy of your project folder first.)

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 125

➤ Open the Source Control menu. Go to the StoreSearch – urlsession submenu
and choose Switch to Branch.

It is possible that you get this message:

The message that appears when you have uncommitted changes

That means changes were made to the source code, the storyboard, or any other
files that are being tracked by Git since your last commit. You may have done that
yourself – often just opening a storyboard causes it to be modified – but sometimes
Xcode itself decides to change things like the .xcodeproj file. It’s also possible that
you did not commit some of the files that have changes (possibly because it’s a file
that you don’t care about).

If that happens you have two choices:

1. Commit those changes. Simply do a new commit from the Source Control menu.

2. Discard the changes. Choose Source Control → Discard All Changes.

Then try Switch to Branch again.

You should see a dialog that lets you pick the branch to switch to. Select master
and click Switch:

Choosing the branch to switch to

After a few moments, Xcode will have switched back to the master branch. Verify
this in the Source Control menu: it should now say StoreSearch – master. In
the History window you should see only the commits up to “asynchronous
networking”, but none of the URLSession stuff.

➤ To merge the “urlsession” branch into the master branch, go to Source Control
→ StoreSearch – master → Merge from Branch.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 126

(If you get the “The working copy has uncommitted changes” warning again, then
first choose Discard All Changes. You may have to do this more than once.)

Choosing the branch to merge from

Choose the urlsession branch and click Merge. This brings up a preview pane that
lets you review the changes that will be made. Click Merge again.

Now the master branch is up-to-date with the networking changes. If you want to,
you can remove the “urlsession” branch or you can keep it and do more work on it
later.

Just in case Xcode didn’t want to cooperate, here is how you’d do it from the
command line.

➤ First close Xcode. You don’t want to do any of this while Xcode still has the
project open. That’s just asking for trouble.

➤ Open a Terminal, cd to the StoreSearch folder, and type the following commands:

git stash

This moves any unsaved files out of the way (it doesn’t have anything to do with
facial hair). This is similar to doing Discard All Changes from the Xcode menu,
although stashed changes are preserved in a temporary location, not thrown away.

git checkout master

This switches the current branch back to the master branch.

git merge urlsession

This merges the changes from the “urlsession” branch back into the master branch.
If you get an error message at this point, then simply do git stash again and
repeat the git merge command.

(By the way, you don’t really need to keep those stashed files around, so if you
want to remove them from your repository, you can do git stash drop. If you
stashed twice, you also need to drop twice.)

➤ Open the project again in Xcode. Now you’re back at the master branch and it
also has the latest networking changes.

➤ Build and run to see if everything still works.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 127

Git is a pretty awesome tool but it takes a while to get familiar with. Unfortunately,
Xcode’s support for things like merges is still spotty and you’re better off using the
command line for the more advanced commands. It’s well worth learning!

You can find the files for the app up to this point under 05 - URLSession in the
tutorial’s Source Code folder.

Note: Even though URLSession is pretty easy to use and quite capable, many
developers prefer to use third-party networking libraries that are often even
more convenient and powerful.

The most popular library at this point is AFNetworking, written in Objective-C
but very usable from Swift (github.com/AFNetworking). A native Swift library
is Alamofire (github.com/Alamofire).

I suggest you check out these libraries and see how you like them. Networking
is such an important feature of mobile apps that it’s worth being familiar with
the different possible approaches to send data up and down the ’net.

The Detail pop-up
The iTunes web service sends back a lot more information about the products than
you’re currently displaying. Let’s add a “details” screen to the app that pops up
when the user taps a row in the table:

The app shows a pop-up when you tap a search result

The table and search bar are still visible in the background, but they have been
darkened.

You will place this Detail pop-up on top of the existing screen using a presentation
controller, use Dynamic Type to change the fonts based on the user’s preferences,

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 128

draw your own gradients with Core Graphics, and learn to make cool keyframe
animations. Fun times ahead!

The to-do list for this section is:

• Design the Detail screen in the storyboard.

• Show this screen when the user taps on a row in the table.

• Put the data from the SearchResult into the screen. This includes the item’s
price, formatted in the proper currency.

• Make the Detail screen appear with a cool animation.

A new screen means a new view controller, so let’s start with that.

➤ Add a new Cocoa Touch Class file to the project. Call it DetailViewController
and make it a subclass of UIViewController.

You’re first going to do the absolute minimum to show this new screen and to
dismiss it. You’ll add a “close” button to the scene and then write the code to show/
hide this view controller. Once that works you will put in the rest of the controls.

➤ Open the storyboard and drag a new View Controller into the canvas. Change
its Class to DetailViewController.

➤ Set the Background color of the main view to black, 50% opaque. That makes it
easier to see what is going on in the next steps.

➤ Drag a new View into the scene. Using the Size inspector, make it 240 points
wide and 240 high. Center the view in the scene.

➤ In the Attributes inspector, change the Background color of this new view to
white, 95% opaque. This makes it appear slightly translucent, just like navigation
bars.

➤ With this new view still selected, go to the Identity inspector. In the field
where it says “Xcode Specific Label”, type Pop-up View. You can use this field to
give your views names, so they are easier to distinguish inside Interface Builder.

Giving the view a description for use in Xcode

➤ Drag a Button into the scene and place it somewhere on the Pop-up View. In the
Attributes inspector, change Image to CloseButton (you already added this
image to the asset catalog earlier).

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 129

➤ Remove the button’s text. Choose Editor → Size to Fit Content to resize the
button and place it in the top-left corner of the Pop-up View (at X = 3 and Y = 0).

➤ If the button’s Type now says Custom, change it back to System. That will
make the image turn blue (because the default tint color is blue).

➤ Set the Xcode Specific Label for the Button to Close Button. Remember that this
only changes what the button is called inside Interface Builder; the user will never
see that text.

The design should look as follows:

The Detail screen has a white square and a close button on a dark background

Note: Xcode currently gives a warning that this new view controller is
unreachable. This warning will disappear after you make a segue to it, which
you’ll do in a second.

Let’s write the code to show and hide this new screen.

➤ In DetailViewController.swift, add the following action method:

@IBAction func close() {
 dismiss(animated: true, completion: nil)
}

There is no need to create a delegate protocol because there’s nothing to
communicate back to the SearchViewController.

➤ Connect this action method to the X button’s Touch Up Inside event in Interface
Builder. (As before, Ctrl-drag from the button to the view controller and pick from
Sent Events.)

➤ Ctrl-drag from Search View Controller to Detail View Controller to make a
Present Modally segue. Give it the identifier ShowDetail.

Because the table view doesn’t use prototype cells you have to put the segue on

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 130

the view controller itself. That means you need to trigger the segue manually when
the user taps a row.

➤ Open SearchViewController.swift and change “didSelectRowAt” to the
following:

func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 tableView.deselectRow(at: indexPath, animated: true)
 performSegue(withIdentifier: "ShowDetail", sender: indexPath)
}

You’re sending along the index-path of the selected row as the sender parameter.
This will come in useful later when you’re putting the SearchResult object into the
Detail pop-up.

Let’s see how well this works.

➤ Run the app and tap on a search result. Hmm, that doesn’t look too good.

Even though you set its main view to be half transparent, the Detail screen still has
a solid black background. Only during the animation is it see-through:

What happens when you present the Detail screen modally

Hmm, presenting this new screen with a regular modal segue isn’t going to achieve
the effect we’re after.

There are three possible solutions:

1. Don’t have a DetailViewController. You can load the view for the detail pop-up
from a nib and add it as a subview of SearchViewController, and put all the
logic for this screen in SearchViewController as well. This is not a very good
solution because it makes SearchViewController more complex – the logic for a
new screen should really go into its own view controller.

2. Use the view controller containment APIs to embed the DetailViewController
“inside” the SearchViewController. This is a better solution but still more work
than necessary. (You’ll see an example of view controller containment in the

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 131

next section where you’ll be adding a special landscape mode to the app.)

3. Use a presentation controller. This lets you customize how modal segues
present their view controllers on the screen. You can even have custom
animations to show and hide the view controllers.

Let’s go for #3. Transitioning from one screen to another in an iOS app involves a
complex web of objects that take care of all the details concerning presentations,
transitions, and animations. Normally, that all happens behind the scenes and you
can safely ignore it.

But if you want to customize how some of this works, you’ll have to dive into the
excitingly strange world of presentation controllers and transitioning delegates.

➤ Add a new Swift File to the project, named DimmingPresentationController.

➤ Replace the contents of this new file with the following:

import UIKit

class DimmingPresentationController: UIPresentationController {
 override var shouldRemovePresentersView: Bool {
 return false
 }
}

The standard UIPresentationController class contains all the logic for presenting
new view controllers. You’re providing your own version that overrides some of this
behavior, in particular telling UIKit to leave the SearchViewController visible. That’s
necessary to get the see-through effect.

In a short while you’ll also add a light-to-dark gradient background view to this
presentation controller; that’s where the “dimming” in its name comes from.

Note: It’s called a presentation controller, but it is not a view controller. The
use of the word controller may be a bit confusing here but not all controllers
are for managing screens in your app (only those with “view” in their name).

A presentation controller is an object that “controls” the presentation of
something, just like a view controller is an object that controls a view and
everything in it. Soon you’ll also see an animation controller, which controls –
you guessed it – an animation.

There are quite a few different kinds of controller objects in the various iOS
frameworks. Just remember that there’s a difference between a view controller
and other types of controllers.

Now you need to tell the app that you want to use your own presentation controller
to show the Detail pop-up.

➤ In DetailViewController.swift, add the following extension at the very bottom

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 132

of the file:

extension DetailViewController: UIViewControllerTransitioningDelegate {

 func presentationController(forPresented presented: UIViewController,
 presenting: UIViewController?,
 source: UIViewController)
 -> UIPresentationController? {
 return DimmingPresentationController(
 presentedViewController: presented, presenting: presenting)
 }
}

The methods from this delegate protocol tell UIKit what objects it should use to
perform the transition to the Detail View Controller. It will now use your new
DimmingPresentationController class instead of the standard presentation
controller.

➤ Also add the init?(coder) method to class DetailViewController:

required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 modalPresentationStyle = .custom
 transitioningDelegate = self
}

Recall that init?(coder) is invoked to load the view controller from the storyboard.
Here you tell UIKit that this view controller uses a custom presentation and you set
the delegate that will call the method you just implemented.

➤ Run the app again and tap a row to bring up the detail pop-up. That looks better!
Now the list of search results remains visible:

The Detail pop-up background is now see-through

The standard presentation controller removed the underlying view from the screen,
making it appear as if the Detail pop-up had a solid black background. Removing

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 133

the view makes sense most of the time when you present a modal screen, as the
user won’t be able to see the previous screen anyway (not having to redraw this
view saves battery power too).

However, in our case the modal segue leads to a view controller that only partially
covers the previous screen. You want to keep the underlying view to get the see-
through effect. That’s why you needed to supply your own presentation controller
object.

Later on you’ll add custom animations to this transition and for that you need to
tweak the presentation controller some more and also provide your own animation
controller objects.

➤ Also verify that the close button works to dismiss the pop-up.

Now run the app on the iPhone 7 Plus simulator. What happens? The Detail pop-up
isn’t properly centered in the screen anymore.

Exercise. What do you need to do to center the Detail pop-up?

Answer: Add some Auto Layout constraints, of course! The current design of the
Detail screen is for the iPhone SE. When the app runs on a larger device, UIKit
doesn’t know yet that it should keep the pop-up view centered.

➤ In the storyboard, select the Pop-up View. Click the Align button at the bottom
of the canvas and put checkmarks in front of Horizontally in Container and
Vertically in Container.

Adding constraints to align the Pop-up View

➤ Press Add 2 Constraints to finish. This adds two new constraints to the Pop-up
View that keep it centered, represented by the red lines that cross the scene:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 134

The Pop-up View with alignment constraints

One small hiccup: these lines are supposed to be blue, not red. Whenever you see
red or orange lines, Auto Layout has a problem.

The number one rule for using Auto Layout is this: For each view you always need
enough constraints to determine both its position and size.

Before you added your own constraints, Xcode gave automatic constraints to the
Pop-up View, based on where you placed that view in Interface Builder. But as soon
as you add a single constraint of your own, you no longer get these automatic
constraints.

The Pop-up View has two constraints that determine the view’s position – it is
always centered horizontally and vertically in the window – but there are no
constraints yet for its size.

Xcode is helpful enough to point this out in the Issue navigator:

Xcode shows Auto Layout errors in the Issue navigator

➤ Tap the small red arrow in the outline pane to get a more detailed explanation of
the errors. It’s obvious that something’s missing. You know it’s not the position –
the two alignment constraints are enough to determine that – so it must be the
size.

The easiest way to fix these errors is to give the Pop-up View fixed width and height
constraints.

➤ Select the Pop-up View and click the Pin button. Put checkmarks in front of
Width and Height. Click Add 2 Constraints to finish.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 135

Pinning the width and height of the Pop-up View

Now the lines turn blue and Auto Layout is happy.

Note: If your lines do not turn blue and the design looks something like the
following, then your constraints and the view’s frame do not match up.

Auto Layout believes the view is misplaced

In other words, Auto Layout thinks that the Pop-up view should be placed where
the orange dotted box is but you’ve put it somewhere else. To fix this, click the
Resolve Auto Layout Issues button at the bottom (to the right of the Pin button)
and choose Update Frames:

The Resolve Auto Layout Issues menu

➤ Run the app on the different Simulators and verify that the pop-up now always
shows up in the exact center of the screen.

Adding the rest of the controls
Let’s finish the design of the Detail screen. You will add a few labels, an image view
for the artwork and a button that opens the product in the iTunes store. The design
will look like this:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 136

The Detail screen with the rest of the controls

➤ Drag a new Image View, six Labels, and a Button into the canvas and build a
layout like the one from the picture.

Some suggestions for the dimensions:

➤ The Name label’s font is System Bold 20. Set Autoshrink to Minimum Font
Scale so the font can become smaller if necessary to fit as much text as possible.

➤ The font for the $9.99 button is also System Bold 20. In a moment you will
also give this button a background image.

➤ You shouldn’t have to change the font for the other labels; they use the default
value of System 17.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 137

➤ Set the Color for the Type: and Genre: labels to 50% opaque black.

These new controls are pretty useless without outlet properties, so add the
following lines to DetailViewController.swift:

@IBOutlet weak var popupView: UIView!
@IBOutlet weak var artworkImageView: UIImageView!
@IBOutlet weak var nameLabel: UILabel!
@IBOutlet weak var artistNameLabel: UILabel!
@IBOutlet weak var kindLabel: UILabel!
@IBOutlet weak var genreLabel: UILabel!
@IBOutlet weak var priceButton: UIButton!

➤ Connect the outlets to the views in the storyboard. Ctrl-drag from Detail View
Controller to each of the views and pick the corresponding outlet. (The Type: and
Genre: labels and the X button do not get an outlet.)

➤ Run the app to see if everything still works.

The new controls in the Detail pop-up

The reason you did not put a background image on the price button yet is that I
want to tell you about stretchable images. When you put a background image on
a button in Interface Builder, it always has to fit the button exactly. That works fine
in many cases, but it’s more flexible to use an image that can stretch to any size.

The caps are not stretched but the inner part of the image is

When an image view is wider than the image, it will automatically stretch the image
to fit. In the case of a button, however, you don’t want to stretch the ends (or
“caps”) of the button, only the middle part. That’s what a stretchable image lets
you do.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 138

In the Bull’s Eye tutorial you used resizableImage(withCapInsets) to cut the images
for the slider track into stretchable parts. You can also do this in the asset catalog
without having to write any code.

➤ Open Assets.xcassets and select the PriceButton image set.

The PriceButton image

If you take a detailed look at this image you will see that it is only 11 points wide.
That means it has a 5-point cap on the left, a 5-point cap on the right, and a 1-
point body that will be stretched out.

Click Show Slicing at the bottom.

The Start Slicing button

Now all you have to do is click Start Slicing on each of the three images, followed
by the Slice Horizontally button:

The Slice Horizontally button

You should end up with something like this for each of the button sizes:

After slicing

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 139

Each image is cut into three parts: the caps on the end and a one-pixel area in the
middle that is the stretchable part. Now when you put this image onto a button or
inside a UIImageView, it will automatically stretch itself to whatever size it needs to
be.

➤ Go back to the storyboard. For the $9.99 button, change Background to
PriceButton.

If you see the image repeating, make sure that the button is only 24 points high,
the same as the image height.

➤ Run the app and check out that button. Here’s a close-up of what it looks like:

The price button with the stretchable background image

The main reason you’re using a stretchable image here is that the text on the
button may vary in size so you don’t know in advance how big the button needs to
be. If your app has a lot of custom buttons, it’s worth making their images
stretchable. That way you won’t have to re-do the images whenever you’re
tweaking the sizes of the buttons.

The button could still look a little better, though – a black frame around dark green
text doesn’t particularly please the eye. You could go into Photoshop and change
the color of the image to match the text color, but there’s an easier method.

The color of the button text comes from the global tint color. UIImage makes it very
easy to make images appear in the same tint color.

➤ In the asset catalog, select the PriceButton set again and go to the Attribute
inspector. Change Render As to Template Image.

When you set the “template” rendering mode on an image, UIKit removes the
original colors from the image and paints the whole thing in the tint color.

I like the dark green tint color in the rest of the app but for this pop-up it’s a bit too
dark. You can change the tint color on a per-view basis; if that view has subviews
the new tint color also applies to these subviews.

➤ In DetailViewController.swift, add the line that sets the tintColor to
viewDidLoad():

override func viewDidLoad() {
 super.viewDidLoad()
 view.tintColor = UIColor(red: 20/255, green: 160/255, blue: 160/255,
 alpha: 1)

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 140

}

Note that you’re setting the new tintColor on view, not just on priceButton. That
will apply the lighter tint color to the close button as well:

The buttons appear in the new tint color

Much better, but there is still more to tweak. In the screenshot I showed you at the
start of this section, the pop-up view had rounded corners. You could use an image
to make it look like that but instead I’ll show you a little trick.

UIViews do their drawing using a so-called CALayer object. The CA prefix stands for
Core Animation, which is the awesome framework that makes animations so easy
on the iPhone. You don’t need to know much about those “layers”, except that each
view has one, and that layers have some handy properties.

➤ Add the following line to viewDidLoad():

popupView.layer.cornerRadius = 10

You ask the Pop-up View for its layer and then set the corner radius of that layer to
10 points. And that’s all you need to do!

➤ Run the app. There’s your rounded corners:

The pop-up now has rounded corners

The close button is pretty small, about 15 by 15 points. From the Simulator it is
easy to click because you’re using a precision pointing device (the mouse). But your

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 141

fingers are a lot less accurate, making it much harder to aim for that tiny button on
an actual device.

That’s one reason why you should always test your apps on real devices and not
just on the Simulator. (Apple recommends that buttons always have a tap area of at
least 44×44 points.)

To make the app more user-friendly, you’ll also allow users to dismiss the pop-up by
tapping anywhere outside it. The ideal tool for this job is a gesture recognizer.

➤ Add a new extension to DetailViewController.swift:

extension DetailViewController: UIGestureRecognizerDelegate {
 func gestureRecognizer(_ gestureRecognizer: UIGestureRecognizer,
 shouldReceive touch: UITouch) -> Bool {
 return (touch.view === self.view)
 }
}

You only want to close the Detail screen when the user taps outside the pop-up, i.e.
on the background. Any other taps should be ignored. That’s what this delegate
method is for. It only returns true when the touch was on the background view but
false if it was inside the Pop-up View.

Note that you’re using the identity operator === to compare touch.view with
self.view. You want to know whether both variables refer to the same object. This
is different from using the == equality operator. That would check whether both
variables refer to objects that are considered equal, even if they aren’t the same
object. (Using == here would have worked too, but only because UIView treats ==
and === the same. But not all objects do, so be careful!)

➤ Add the following lines to viewDidLoad():

let gestureRecognizer = UITapGestureRecognizer(target: self,
 action: #selector(close))
gestureRecognizer.cancelsTouchesInView = false
gestureRecognizer.delegate = self
view.addGestureRecognizer(gestureRecognizer)

This creates the new gesture recognizer that listens to taps anywhere in this view
controller and calls the close() method in response.

➤ Try it out. You can now dismiss the pop-up by tapping anywhere outside the
white pop-up area. That’s a common thing that users expect to be able to do, and it
was easy enough to add to the app. Win-win!

Putting the data into the Detail pop-up
Now that the app can show this pop-up after a tap on a search result, you should
put the name, genre and price from the selected product in the pop-up.

Exercise. Try to do this by yourself. It’s not any different from what you’ve done in

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 142

the past tutorials!

There is more than one way to pull this off, but I like to do it by putting the
SearchResult object in a property on the DetailViewController.

➤ Add this property to DetailViewController.swift:

var searchResult: SearchResult!

As usual, this is an implicitly-unwrapped optional because you won’t know what its
value will be until the segue is performed. It is nil in the mean time.

➤ Also add a new method, updateUI():

func updateUI() {
 nameLabel.text = searchResult.name

 if searchResult.artistName.isEmpty {
 artistNameLabel.text = "Unknown"
 } else {
 artistNameLabel.text = searchResult.artistName
 }

 kindLabel.text = searchResult.kind
 genreLabel.text = searchResult.genre
}

That looks very similar to what you did in SearchResultCell.

The logic for setting the text on the labels has its own method, updateUI(), because
that is cleaner than stuffing everything into viewDidLoad().

➤ Call the new method from viewDidLoad():

override func viewDidLoad() {
 super.viewDidLoad()
 . . .

 if searchResult != nil {
 updateUI()
 }
}

The if != nil check is a defensive measure, just in case the developer forgets to
fill in searchResult on the segue.

(Note: You can also write this as if let _ = searchResult to unwrap the optional.
Because you’re not actually using the unwrapped value for anything, you specify
the _ wildcard symbol.)

The Detail pop-up is launched with a segue triggered from SearchViewController’s
tableView(didSelectRowAt). You’ll have to add a prepare(for:sender:) method to
configure the DetailViewController when the segue happens.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 143

➤ Add this method to SearchViewController.swift:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "ShowDetail" {
 let detailViewController = segue.destination as! DetailViewController
 let indexPath = sender as! IndexPath
 let searchResult = searchResults[indexPath.row]
 detailViewController.searchResult = searchResult
 }
}

This should hold no big surprises for you. When “didSelectRowAt” starts the segue,
it sends along the index-path of the selected row. That lets you find the
SearchResult object and put it in DetailViewController’s property.

➤ Try it out. All right, that’s starting to look like something:

The pop-up with filled-in data

One thing you did in SearchResultCell was translating the kind value from an
internal identifier to something that looks a bit better to humans. That logic, in the
form of the kindForDisplay() method, sits in SearchResultCell, but now I’d like to
use it in DetailViewController as well. Problem: the DetailViewController doesn’t
have anything to do with SearchResultCell.

You could simply copy-paste the kindForDisplay() method but then you have
identical code in two different places in the app.

What if you decide to support another type of product, then you’d have to
remember to update this method in two places as well. That sort of thing becomes
a maintenance nightmare and is best avoided. Instead, you should look for a better
place to put that method.

Exercise: Where would you put it?

Answer: kind is a property on the SearchResult object. It makes sense that you can
also ask the SearchResult for a nicer version of that value, so let’s move the entire
kindForDisplay() method into the SearchResult class.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 144

➤ Cut the kindForDisplay() method out of the SearchResultCell source code and
put it in SearchResult.swift, inside class SearchResult.

Because SearchResult already has a kind property, you don’t have to pass that
value as a parameter to this method.

➤ Change the method signature to:

func kindForDisplay() -> String {

Of course, SearchResultCell.swift’s configure(for) now tries to call a method
that no longer exists.

➤ Fix the following line in configure(for):

artistNameLabel.text = String(format: "%@ (%@)",
 searchResult.artistName, searchResult.kindForDisplay())

Let’s also call this new method in DetailViewController.swift.

➤ Change the line in updateUI() that sets the “kind” label to:

kindLabel.text = searchResult.kindForDisplay()

Nice, you refactored the code to make it cleaner and more powerful. I often start
out by putting all my code in the view controllers but as the app evolves, more and
more gets moved into their own classes where it really belongs.

In retrospect, the kindForDisplay() method really returns a property of
SearchResult in a slightly different form, so it is functionality that logically goes with
the SearchResult object, not with its cell or the view controller.

It’s OK to start out with your code being a bit of a mess – that’s what it often is for
me! – but whenever you see an opportunity to clean things up and simplify it, you
should take it.

As your source code evolves, it will become clearer what the best internal structure
is for that particular program. But you have to be willing to revise the code when
you realize it can be improved in some way!

➤ Run the app. The “Type” label in the pop-up should now have the same polished
text as the list of search results.

There are three more things to do on this screen:

1. Show the price, in the proper currency.

2. Make the price button open the product page in the iTunes store.

3. Download and show the artwork image. This image is slightly larger than the
one from the table view cell.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 145

These are all fairly small features so you should be able to do them quite quickly.
The price goes first.

➤ Add the following code to updateUI():

let formatter = NumberFormatter()
formatter.numberStyle = .currency
formatter.currencyCode = searchResult.currency

let priceText: String
if searchResult.price == 0 {
 priceText = "Free"
} else if let text = formatter.string(
 from: searchResult.price as NSNumber) {
 priceText = text
} else {
 priceText = ""
}

priceButton.setTitle(priceText, for: .normal)

You’ve used DateFormatter in previous tutorials to turn a Date object into human-
readable text. Here you use NumberFormatter to do the same thing for numbers.

In the past tutorials you’ve turned numbers into text using string interpolation \(…)
and String(format:) with the %f or %d format specifier. However, in this case you’re
not dealing with regular numbers but with money in a certain currency.

There are different rules for displaying various currencies, especially if you take the
user’s language and country settings into consideration. You could program all of
these rules yourself, which is a lot of effort, or choose to ignore them. Fortunately,
you don’t have to make that tradeoff because you have NumberFormatter to do all
the hard work.

You simply tell the NumberFormatter that you want to display a currency value and
what the currency code is. That currency code comes from the web service and is
something like “USD” or “EUR”. NumberFormatter will insert the proper symbol, such
as $ or € or ¥, and formats the monetary amount according to the user’s regional
settings.

There’s one caveat: if you’re not feeding NumberFormatter an actual number, it
cannot do the conversion. That’s why string(from) returns an optional that you
need to unwrap.

➤ Run the app and see if you can find some good deals. :-)

Occasionally you might see this:

The price doesn’t fit into the button

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 146

When you designed the storyboard you made this button 68 points wide. You didn’t
put any constraints on it, so Xcode gave it an automatic constraint that always
forces the button to be 68 points wide, no more, no less.

But buttons, like labels, are perfectly able to determine what their ideal size is
based on the amount of text they contain. That’s called the intrinsic content size.

➤ Open the storyboard and select the price button. Choose Editor → Size to Fit
Content from the menu bar (or press ⌘=). This resizes the button to its ideal size,
based on the current text.

That alone is not enough. You also need to add at least one constraint to the button
or Xcode will still apply the automatic constraints.

➤ With the price button selected, click the Pin button. Add two spacing constraints,
one on the right and one on the bottom, both 6 points in size. Also add a 24-point
Height constraint:

Pinning the price button

Don’t worry if your storyboard now looks something like this:

Orange bars indicate the button is misplaced

The orange lines simply mean that the current position and/or size of the button in
the storyboard does not correspond to the position and size that Auto Layout
calculated from the constraints. This is easily fixed:

➤ Select the button and from the menu bar choose Editor → Resolve Auto
Layout Issues → Update Frames. Now the lines should all turn blue.

To recap, you have set the following constraints on the button:

• Fixed height of 24 points. That is necessary because the background image is 24
points tall.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 147

• Pinned to the right edge of the pop-up with a distance of 6 points. When the
button needs to grow to accommodate larger prices, it will extend towards the
left. Its right edge always stays aligned with the right edge of the pop-up.

• Pinned to the bottom of the pop-up, also with a distance of 6 points.

• There is no constraint for the width. That means the button will use its intrinsic
width – the larger the text, the wider the button. And that’s exactly what you
want to happen here.

➤ Run the app again and pick an expensive product (something with a price over
$9.99; e-books are a good category for this).

The button is a little cramped

That’s better but the text now runs into the border from the background image. You
can fix this by setting the “content edge insets” for the button.

➤ Go to the Size inspector and find where it says Content Insets. Change Left
and Right to 5.

Changing the content edge insets of the button

This adds 5 points of padding on the left and right sides of the button. Of course,
this causes the button’s frame to be misplaced again because it is now 10 points
wider.

➤ Choose Update Frames from the Resolve Auto Layout Issues menu to fix it.

➤ Run the app; now the price button should finally look good:

That price button looks so good you almost want to tap it!

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 148

Tapping the button should take the user to the selected product’s page on the
iTunes store.

➤ Add the following method to DetailViewController.swift:

@IBAction func openInStore() {
 if let url = URL(string: searchResult.storeURL) {
 UIApplication.shared.open(url, options: [:], completionHandler: nil)
 }
}

➤ And connect the openInStore action to the button’s Touch Up Inside event (in the
storyboard).

That’s all you have to do. The web service returned a URL to the product page. You
simply tell the UIApplication object to open this URL. iOS will now figure out what
sort of URL it is and launch the proper app in response – iTunes Store, App Store,
or Mobile Safari. (On the Simulator you’ll probably receive an error message that
the URL could not be opened. Try it on your device instead.)

A word on UIApplication

You haven’t used this object before, but every app has one and it handles
application-wide functionality. You won’t directly use UIApplication a lot,
except for special features such as opening URLs. Instead, most of the time
you deal with UIApplication is through your AppDelegate class, which – as you
can guess from its name – is the delegate for UIApplication.

Finally, to load the artwork image you’ll use your old friend again, the handy
UIImageView extension.

➤ First add a new instance variable to DetailViewController.swift. This is
necessary to be able to cancel the download task:

var downloadTask: URLSessionDownloadTask?

➤ Then add the following line to updateUI():

if let largeURL = URL(string: searchResult.artworkLargeURL) {
 downloadTask = artworkImageView.loadImage(url: largeURL)
}

This is the same thing you did in SearchResultCell, except that you use the other
artwork URL (100×100 pixels) and no placeholder image.

It’s a good idea to cancel the image download if the user closes the pop-up before
the image has been downloaded completely.

➤ Add a deinit method:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 149

deinit {
 print("deinit \(self)")
 downloadTask?.cancel()
}

Remember that deinit is called whenever the object instance is deallocated and its
memory is reclaimed. That happens after the user closes the DetailViewController
and the animation to remove it from the screen has completed. If the download
task is still busy by then, you cancel it.

Exercise. Why did you write downloadTask?.cancel() with a question mark?

Answer: Because downloadTask is an optional you need to unwrap it somehow
before you can use it. When you just need to call a method on the object, it’s
easiest to use optional chaining like you did here. If downloadTask is nil, there is
nothing to cancel and Swift will simply ignore the call to cancel().

➤ Try it out!

The pop-up now shows the artwork image

Did you see the print() from deinit after closing the pop-up? It’s always a good
idea to log a message when you’re first trying out a new deinit method, to see if it
really works. (If you don’t see that print(), it means deinit is never called, and
you may have an ownership cycle somewhere keeping your object alive longer than
intended. This is why you used [weak self] in the closure from the UIImageView
extension, to break any such ownership cycles.)

➤ This is a good time to commit the changes.

Dynamic Type
The iOS Settings app has an accessibility menu that allows users to choose larger
or smaller text. This is especially helpful for people who don’t have 20/20 vision –
probably most of the population – and for whom the default font is too hard to

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 150

read. Nobody likes squinting at their device!

You can find these settings under General → Accessibility → Larger Text on your
device and also in the Simulator:

The Larger Text accessibility settings

Apps have to opt-in to use this “Dynamic Type” feature. Instead of choosing a
specific font for the text labels, you use one of the built-in dynamic text styles.

Just to get some feel for how this works, you’ll change the Detail pop-up to use
Dynamic Type for its labels.

➤ Open the storyboard and go to the Detail View Controller scene. Change the font
of the Name label to Headline:

Changing the font to the dynamic Headline style

You can’t pick a size for this font. That is up to the user, based on their Larger Text
settings.

➤ Choose Editor → Size to Fit Content to resize the label.

➤ Set the Lines attribute to 0. This allows the Name label to fit more than one line
of text.

Of course, if you don’t know beforehand how large the label’s font will be, you also
won’t know how large the label itself will end up being, especially if it sometimes

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 151

may have more than one line of text. You won’t be surprised to hear that Auto
Layout and Dynamic Type go hand-in-hand.

You want to make the name label resizable so that it can hold any amount of text at
any possible font size, but it cannot go outside the bounds of the pop-up, nor
overlap the labels below.

The trick is to capture these requirements in Auto Layout constraints.

Previously you’ve used the Pin button to make constraints, but that may not always
give you the constraints you want. With this menu, pins are expressed as the
amount of “spacing to nearest neighbor”. But what exactly is the nearest neighbor?

If you use the Pin button on the Name label, Interface Builder may decide to pin it
to the bottom of the close button, which is weird. It makes more sense to pin the
Name label to the image view instead. That’s why you’re going to use a different
way to make constraints.

➤ Select the Name label. Now Ctrl-drag to the Image View and let go of the
mouse button.

Ctrl-drag to make a new constraint between two views

From the pop-up that appears, choose Vertical Spacing:

The possible constraint types

This puts a vertical spacing constraint between the label and the image view:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 152

The new vertical space constraint

Of course, you’ll also get some red lines because the label still needs additional
constraints.

I’d like the vertical space you just added to be 8-points.

➤ Select the constraint (by carefully clicking it with the mouse or by selecting it
from the outline pane), then go to the Size inspector and change Constant to 8.

The Name label may not actually move down yet when you do this, because there
are not enough constraints yet.

Attributes for the vertical space constraint

Note that the inspector clearly describes what sort of constraint this is: Name
Label.Top is connected to Artwork Image View.Bottom with a distance (Constant) of
8 points.

➤ Select the Name label again and Ctrl-drag to the left and connect it to Pop-up
View. From the pop-up choose Leading Space to Container:

The pop-up shows different constraint types

This adds a blue bar on the left. Notice how the pop-up offered different options
this time? The constraints that you can make depend on the direction that you’re
dragging.

➤ Repeat but this time Ctrl-drag to the right. Now choose Trailing Space to
Container.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 153

The constraints for the Name label

The Name label is now connected to the left edge of the Pop-up View and to its
right edge – enough to determine its X-position and width – and to the bottom of
the image view, for its Y-position. There is no constraint for the label’s height,
allowing it to grow as tall as it needs to (using the intrinsic content size).

Shouldn’t these constraints be enough to uniquely determine the label’s position
and size? If so, why is there still a red box?

Simple: the image view now has a constraint attached to it, and therefore no longer
gets automatic constraints. You also have to add constraints that give the image
view its position and size.

➤ Select the Image View, Ctrl-drag up to the Pop-up View, and choose Top
Space to Container. That takes care of the Y-position.

➤ Repeat but now choose Center Horizontally in Container. That center-aligns
the image view to take care of the X-position. (If you don’t see this option, then
make sure you’re not dragging outside the Pop-up View.)

➤ Ctrl-drag again, but this time let the mouse button go while you’re still inside the
image view. Hold down Shift and put checkmarks in front of both Width and
Height, then press return. (If you don’t see both options, Ctrl-drag diagonally
instead of straight up.)

Adding multiple constraints at once

Now the image view and the Name label have all blue bars. If the Name label is still
misplaced for some reason – orange box – then select it and choose Update Frames
from the Resolve Auto Layout Issues menu.

There’s one more thing you need to fix. Look again at that blue bar on the right of
the Name label. This forces the label to be always about 45 points wide. That’s not
what you want; instead, the label should be able to grow until it reaches the edge
of the Pop-up View.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 154

➤ Click that blue bar to select it and go to the Size inspector. Change Relation to
Greater Than or Equal, and Constant to 10.

Converting the constraint to Greater Than or Equal

Now this constraint can resize to allow the label to grow, but it can never become
smaller than 10 points. This ensures there is at least a 10-point margin between
the label and the edge of the Detail pop-up.

By the way, notice how this constraint is between Pop-up View.Trailing and Name
Label.Trailing? In Auto Layout terminology, trailing means “on the right”, while
leading means “on the left”.

Why didn’t they just call this left and right? Well, not everyone writes in the same
direction. With right-to-left languages such as Hebrew or Arabic, the meaning of
trailing and leading is reversed. That allows your layouts to work without changes
on these exotic languages.

➤ Run the app to try it out:

The text overlaps the other labels

Well, the word-wrapping seems to work but the text overlaps the labels below it.
Let’s add some more constraints so that the other labels get pushed down instead.

Tip: In the next steps I’ll ask you to change the properties of the constraints using
the Attributes inspector, but it can be quite tricky to select those constraints. The
blue bars are often tiny, making them difficult to click. It’s often easier to find the
constraint in the Outline pane but it’s not always immediately obvious which one

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 155

you need.

A smarter way to find a constraint is to first select the view it belongs to, then go to
the Size inspector and look in the Constraints section. Here is what it looks like for
the Name label:

The Name label’s constraints in the Size inspector.png

To edit the constraint, double-click it or use the Edit button on the right.

OK, let’s make those changes:

➤ Select the Artist Name label and change its font to Subhead. Give the label its
ideal size with Size to Fit Content.

➤ Change the font of the other four labels to Caption 1, and Size to Fit Content
them too. (You can do this in a single go if you multiple-select these labels by
holding down the ⌘ key.)

Let’s pin the Artist Name label. Again you do this by Ctrl-dragging.

• Pin it to the left with a Leading Space to Container.

• Pin it to the right with a Trailing Space to Container. Just like before, change this
constraint’s Relation to Greater Than or Equal and Constant to 10.

• Pin it to the Name label with a Vertical Spacing. Change this to size 4.

For the Type: label:

• Pin it to the left with a Leading Space to Container.

• On the right, pin it to the Kind Value label with a Horizontal Spacing. This should
be a 20-point distance. You may get an orange label here if the original distance
was larger or smaller. You’ll fix that in a second.

• Pin it to the Artist Name label with a Vertical Spacing, size 8.

The Kind Value label is slightly different:

• Pin it to the right with a Trailing Space to Container. Change this constraint’s

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 156

Relation to Greater Than or Equal and Constant to 10.

• Ctrl-drag from Kind Value to Type and choose Baseline. This aligns the bottom of
the text of both labels. This alignment constraint determines the Kind Value’s Y-
position so you don’t have to make a separate constraint for that.

• With the Kind Value label selected, choose Resolve Auto Layout Issues →
Update Frames. This fixes any orange thingies.

Two more labels to go. For the Genre: label:

• Pin it to the left with a Leading Space to Container.

• Pin it to the Type: label with a Vertical Spacing, size 4.

And finally, the Genre Value label:

• Pin it to the right with a Trailing Space to Container, Greater Than or Equal 10.

• Make a Baseline alignment between Genre Value and Genre:.

• Make a Leading alignment between Genre Value and Kind Value. This keeps these
two labels neatly positioned below each other.

• Resolve any Auto Layout issues. You may need to set the Constant of the
alignment constraints to 0 if things don’t line up properly.

That’s quite a few constraints but using Ctrl-drag to make them is quite fast. With
some experience you’ll be able to whip together complex Auto Layout designs in no
time.

There is one last thing to do. The last row of labels needs to be pinned to the price
button. That way there are constraints going all the way from the top of the Pop-up
View to the bottom. The heights of the labels plus the sizes of the Vertical Spacing
constraints between them will now determine the height of the Detail pop-up.

The height of the pop-up view is determined by the constraints

➤ Ctrl-drag from the $9.99 button up to Genre Value. Choose Vertical Spacing.
In the Size inspector, set Constant to 10.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 157

Whoops. This messes up your carefully constructed layout and some of the
constraints turn red or orange.

Exercise. Can you explain why this happens?

Answer: The Pop-up View still has a Height constraint that forces it to be 240 points
high. But the labels and the vertical space constraints don’t add up to 240.

➤ You no longer need this Height constraint, so select it (the one called height =
240 in the outline pane) and press delete to get rid of it.

➤ From the Editor → Resolve Auto Layout Issues menu, choose Update
Frames (from the “All Views” section).

Now all your constraints turn blue and everything fits snugly together.

➤ Run the app to try it out.

The text properly wraps without overlapping

You now have an automatically resizing Detail pop-up that uses Dynamic Type for
its labels!

➤ Close the app and open the Settings app. Go to General → Accessibility →
Larger Text. Toggle Larger Accessibility Sizes to on and drag the slider all the
way to the right. That gives you the maximum font size (it’s huge!).

Now go back to StoreSearch and open a new pop-up. The text is a lot bigger:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 158

Changing the text size results in a bigger font

For fun, change the font of the Name label to Body. Bazinga, that’s some big text!

When you’re done playing, put the Name label font back to Headline, and turn off
the Larger Text setting (this slider goes in the middle).

Dynamic Type is an important feature to add to your apps. This was only a short
introduction but I hope the principle is clear: instead of a font with a fixed size you
use one of the Text Styles: Body, Headline, Caption, and so on. Then you set up
Auto Layout constraints to make your views resizable and looking good no matter
how large or small the font.

➤ This is a good time to commit the changes.

Exercise. Put Dynamic Type on the cells from the table view. There’s a catch: when
the user returns from changing the text size settings, the app should refresh the
screen without needing a restart. You can do this by reloading the table view when
the app receives a UIContentSizeCategoryDidChange notification (see the previous
tutorial on how to handle notifications). Good luck! Check the forums at
forums.raywenderlich.com for solutions from other readers.

Stack Views

Setting up all those constraints was quite a bit of work, but it was good Auto
Layout practice! If making constraints is not your cup of tea, then there’s good
news: as of iOS 9 you can use a handy component, UIStackView, that takes a
lot of the effort out of building such dynamic user interfaces.

Using stack views is fairly straightforward: you drop a Horizontal or Vertical
Stack View in your scene, and then you put your labels, image views, and
buttons inside that stack view. Of course, a stack view can contain other stack
views as well, allowing you to create very complex layouts quite easily.

Give it a try! See if you can build the Detail pop-up with stack views. If you
get stuck, we have a video tutorial series on the website that goes into great
detail on UIStackView: raywenderlich.com/tag/stack-view

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 159

Gradients in the background
As you can see in the previous screenshots, the table view in the background is
dimmed by the view of the DetailViewController, which is 50% transparent black.
That allows the pop-up to stand out more.

It works well, but on the other hand, a plain black overlay is a bit dull. Let’s turn it
into a circular gradient instead.

You could use Photoshop to draw such a gradient and place an image view behind
the pop-up, but why use an image when you can also draw using Core Graphics? To
pull this off, you will create your own UIView subclass.

➤ Add a new Swift File to the project. Name it GradientView.

This will be a very simple view. It simply draws a black circular gradient that goes
from a mostly opaque in the corners to mostly transparent in the center. Placed on
a white background, it looks like this:

What the GradientView looks like by itself

➤ Replace the contents of GradientView.swift by:

import UIKit

class GradientView: UIView {
 override init(frame: CGRect) {
 super.init(frame: frame)
 backgroundColor = UIColor.clear
 }

 required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)
 backgroundColor = UIColor.clear
 }

 override func draw(_ rect: CGRect) {
 // 1

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 160

 let components: [CGFloat] = [0, 0, 0, 0.3, 0, 0, 0, 0.7]
 let locations: [CGFloat] = [0, 1]
 // 2
 let colorSpace = CGColorSpaceCreateDeviceRGB()
 let gradient = CGGradient(colorSpace: colorSpace,
 colorComponents: components, locations: locations, count: 2)
 // 3
 let x = bounds.midX
 let y = bounds.midY
 let centerPoint = CGPoint(x: x, y : y)
 let radius = max(x, y)
 // 4
 let context = UIGraphicsGetCurrentContext()
 context?.drawRadialGradient(gradient!,
 startCenter: centerPoint, startRadius: 0,
 endCenter: centerPoint, endRadius: radius,
 options: .drawsAfterEndLocation)
 }
}

In the init(frame) and init?(coder) methods you simply set the background color
to fully transparent (the “clear” color). Then in draw() you draw the gradient on top
of that transparent background, so that it blends with whatever is below.

The drawing code uses the Core Graphics framework (also known as Quartz 2D). It
may look a little scary but this is what it does:

1. First you create two arrays that contain the “color stops” for the gradient. The
first color (0, 0, 0, 0.3) is a black color that is mostly transparent. It sits at
location 0 in the gradient, which represents the center of the screen because
you’ll be drawing a circular gradient.

The second color (0, 0, 0, 0.7) is also black but much less transparent and sits
at location 1, which represents the circumference of the gradient’s circle.
Remember that in UIKit and also in Core Graphics, colors and opacity values
don’t go from 0 to 255 but are fractional values between 0.0 and 1.0.

The 0 and 1 from the locations array represent percentages: 0% and 100%,
respectively. If you have more than two colors, you can specify the percentages
of where in the gradient you want to place these colors.

2. With those color stops you can create the gradient. This gives you a new
CGGradient object.

3. Now that you have the gradient object, you have to figure out how big you need
to draw it. The midX and midY properties return the center point of a rectangle.
That rectangle is given by bounds, a CGRect object that describes the dimensions
of the view.

If I can avoid it, I prefer not to hard-code any dimensions such as “320 by 568
points”. By asking bounds, you can use this view anywhere you want to, no
matter how big a space it should fill. You can use it without problems on any

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 161

screen size from the smallest iPhone to the biggest iPad.

The centerPoint constant contains the coordinates for the center point of the
view and radius contains the larger of the x and y values; max() is a handy
function that you can use to determine which of two values is the biggest.

4. With all those preliminaries done, you can finally draw the thing. Core Graphics
drawing always takes places in a so-called graphics context. We’re not going to
worry about exactly what that is, just know that you need to obtain a reference
to the current context and then you can do your drawing.

And finally, the drawRadialGradient() function draws the gradient according to
your specifications.

It generally speaking isn’t optimal to create new objects inside your draw() method,
such as gradients, especially if draw() is called often. In that case it is better to
create the objects the first time you need them and to reuse the same instance
over and over (lazy loading!).

However, you don’t really have to do that here because this draw() method will be
called just once – when the DetailViewController gets loaded – so you can get
away with being less than optimal.

Note: By the way, you’ll only be using init(frame) to create the GradientView
instance. The other init method, init?(coder), is never used in this app.
UIView demands that all subclasses implement init?(coder) – that is why it is
marked as required – and if you remove this method, Xcode will give an error.

Putting this new GradientView class into action is pretty easy. You’ll add it to your
own presentation controller object. That way the DetailViewController doesn’t
need to know anything about it. Dimming the background is really a side effect of
doing a presentation, so it belongs in the presentation controller.

➤ Open DimmingPresentationController.swift and add the following code inside
the class:

lazy var dimmingView = GradientView(frame: CGRect.zero)

override func presentationTransitionWillBegin() {
 dimmingView.frame = containerView!.bounds
 containerView!.insertSubview(dimmingView, at: 0)
}

The presentationTransitionWillBegin() method is invoked when the new view
controller is about to be shown on the screen. Here you create the GradientView
object, make it as big as the containerView, and insert it behind everything else in
this “container view”.

The container view is a new view that is placed on top of the SearchViewController,

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 162

and it contains the views from the DetailViewController. So this piece of logic
places the GradientView in between those two screens.

There’s one more thing to do: because the DetailViewController’s background
color is still 50% black, this color gets multiplied with the colors inside the gradient
view, making the gradient look extra dark. It’s better to set the background color to
100% transparent, but if we do that in the storyboard it makes it harder to see and
edit the pop-up view. So let’s do this in code instead.

➤ Add the following line to DetailViewController.swift’s viewDidLoad():

view.backgroundColor = UIColor.clear

➤ Run the app and see what happens.

The background behind the pop-up now has a gradient

Nice, that looks a lot smarter.

Animation!
The pop-up itself looks good already, but the way it enters the screen – Poof! It’s
suddenly there – is a bit unsettling. iOS is supposed to be the king of animation, so
let’s make good on that.

You’ve used Core Animation and UIView animations before. This time you’ll use a
so-called keyframe animation to make the pop-up bounce into view.

To animate the transition between two screens, you use an animation controller
object. The purpose of this object is to animate a screen while it’s being presented
or dismissed, nothing more.

Now let’s add some liveliness to this pop-up!

➤ Add a new Swift File to the project, named BounceAnimationController.

➤ Replace the contents of this new file with:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 163

import UIKit

class BounceAnimationController: NSObject,
 UIViewControllerAnimatedTransitioning {

 func transitionDuration(using transitionContext:
 UIViewControllerContextTransitioning?) -> TimeInterval {
 return 0.4
 }

 func animateTransition(using transitionContext:
 UIViewControllerContextTransitioning) {

 if let toViewController = transitionContext.viewController(
 forKey: UITransitionContextViewControllerKey.to),
 let toView = transitionContext.view(
 forKey: UITransitionContextViewKey.to) {

 let containerView = transitionContext.containerView
 toView.frame = transitionContext.finalFrame(for: toViewController)
 containerView.addSubview(toView)
 toView.transform = CGAffineTransform(scaleX: 0.7, y: 0.7)

 UIView.animateKeyframes(
 withDuration: transitionDuration(using: transitionContext),
 delay: 0, options: .calculationModeCubic, animations: {
 UIView.addKeyframe(withRelativeStartTime: 0.0,
 relativeDuration: 0.334, animations: {
 toView.transform = CGAffineTransform(scaleX: 1.2, y: 1.2)
 })
 UIView.addKeyframe(withRelativeStartTime: 0.334,
 relativeDuration: 0.333, animations: {
 toView.transform = CGAffineTransform(scaleX: 0.9, y: 0.9)
 })
 UIView.addKeyframe(withRelativeStartTime: 0.666,
 relativeDuration: 0.333, animations: {
 toView.transform = CGAffineTransform(scaleX: 1.0, y: 1.0)
 })
 }, completion: { finished in
 transitionContext.completeTransition(finished)
 })
 }
 }
}

To become an animation controller, the object needs to extend NSObject and also
implement the UIViewControllerAnimatedTransitioning protocol – quite a mouthful!
The important methods from this protocol are:

• transitionDuration(…) – This determines how long the animation is. You’re
making the pop-in animation last for only 0.4 seconds but that’s long enough.
Animations are fun but they shouldn’t keep the user waiting.

• animateTransition(…) – This performs the actual animation.

To find out what to animate, you look at the transitionContext parameter. This

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 164

gives you a reference to new view controller and lets you know how big it should
be.

The actual animation starts at the line UIView.animateKeyframes(…). This works like
all UIView-based animation: you set the initial state before the animation block,
and UIKit will automatically animate any properties that get changed inside the
closure. The difference with before is that a keyframe animation lets you animate
the view in several distinct stages.

The property you’re animating is the transform. If you’ve ever taken any matrix
math you’ll be pleased – or terrified! – to hear that this is an affine transformation
matrix. It allows you to do all sorts of funky stuff with the view, such as rotating or
shearing it, but the most common use of the transform is for scaling.

The animation consists of several keyframes. It will smoothly proceed from one
keyframe to the next over a certain amount of time. Because you’re animating the
view’s scale, the different toView.transform values represent how much bigger or
smaller the view will be over time.

The animation starts with the view scaled down to 70% (scale 0.7). The next
keyframe inflates it to 120% its normal size. After that, it will scale the view down a
bit again but not as much as before (only 90% of its original size). The final
keyframe ends up with a scale of 1.0, which restores the view to an undistorted
shape.

By quickly changing the view size from small to big to small to normal, you create a
bounce effect.

You also specify the duration between the successive keyframes. In this case, each
transition from one keyframe to the next takes 1/3rd of the total animation time.
These times are not in seconds but in fractions of the animation’s total duration
(0.4 seconds).

Feel free to mess around with the animation code. No doubt you can make it much
more spectacular!

To make this animation happen you have to tell the app to use the new animation
controller when presenting the Detail pop-up. That happens in the transitioning
delegate inside DetailViewController.swift.

➤ Inside the UIViewControllerTransitioningDelegate extension, add the following
method:

func animationController(forPresented presented: UIViewController,
 presenting: UIViewController, source: UIViewController)
 -> UIViewControllerAnimatedTransitioning? {
 return BounceAnimationController()
}

And that’s all you need to do.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 165

➤ Run the app and get ready for some bouncing action!

The pop-up animates

The pop-up looks a lot spiffier with the bounce animation but there are two things
that could be better: the GradientView still appears abruptly in the background, and
the animation upon dismissal of the pop-up is very plain.

There’s no reason why you cannot have two things animating at the same time, so
let’s make the GradientView fade in while the pop-up bounces into view. That is a
job for the presentation controller, because that’s what provides the gradient view.

➤ Go to DimmingPresentationController.swift and add the following to the
bottom of presentationTransitionWillBegin():

dimmingView.alpha = 0
if let coordinator = presentedViewController.transitionCoordinator {
 coordinator.animate(alongsideTransition: { _ in
 self.dimmingView.alpha = 1
 }, completion: nil)
}

You set the alpha value of the gradient view to 0 to make it completely transparent
and then animate it back to 1 (or 100%) and fully visible, resulting in a simple
fade-in. That’s a bit more subtle than making the gradient appear so abruptly.

The special thing here is the transitionCoordinator stuff. This is the UIKit traffic
cop in charge of coordinating the presentation controller and animation controllers
and everything else that happens when a new view controller is presented.

The important thing to know about the transitionCoordinator is that any of your
animations should be done in a closure passed to animateAlongsideTransition to
keep the transition smooth. If your users wanted choppy animations, they would
have bought Android phones!

➤ Also add the method dismissalTransitionWillBegin(), which is used to animate
the gradient view out of sight when the Detail pop-up is dismissed:

override func dismissalTransitionWillBegin() {
 if let coordinator = presentedViewController.transitionCoordinator {
 coordinator.animate(alongsideTransition: { _ in
 self.dimmingView.alpha = 0
 }, completion: nil)

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 166

 }
}

This does the inverse: it animates the alpha value back to 0% to make the gradient
view fade out.

➤ Run the app. The dimming gradient now appears almost without you even
noticing it. Slick!

Let’s add one more quick animation because this stuff is just too much fun. :-)

After tapping the Close button the pop-up slides off the screen, like modal screens
always do. Let’s make this a bit more exciting and make it slide up instead of down.
For that you need another animation controller.

➤ Add a new Swift File to the project, named SlideOutAnimationController.

➤ Replace the contents with:

import UIKit

class SlideOutAnimationController: NSObject,
 UIViewControllerAnimatedTransitioning {
 func transitionDuration(using transitionContext:
 UIViewControllerContextTransitioning?) -> TimeInterval {
 return 0.3
 }

 func animateTransition(using transitionContext:
 UIViewControllerContextTransitioning) {
 if let fromView = transitionContext.view(forKey:
 UITransitionContextViewKey.from) {
 let containerView = transitionContext.containerView
 let duration = transitionDuration(using: transitionContext)
 UIView.animate(withDuration: duration, animations: {
 fromView.center.y -= containerView.bounds.size.height
 fromView.transform = CGAffineTransform(scaleX: 0.5, y: 0.5)
 }, completion: { finished in
 transitionContext.completeTransition(finished)
 })
 }
 }
}

This is pretty much the same as the other animation controller, except that the
animation itself is different. Inside the animation block you subtract the height of
the screen from the view’s center position while simultaneously zooming it out to
50% of its original size, making the Detail screen fly up-up-and-away.

➤ In DetailViewController.swift, add the following method to the
UIViewControllerTransitioningDelegate extension:

func animationController(forDismissed dismissed: UIViewController)
 -> UIViewControllerAnimatedTransitioning? {

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 167

 return SlideOutAnimationController()
}

➤ Run the app and try it out. That looks pretty sweet if you ask me!

➤ If you’re happy with the way the animation looks, then commit your changes.

You can find the project files for the app up to this point under 06 - Detail Pop-up
in the tutorial’s Source Code folder.

Exercise. Create some exciting new animations. I’m sure you can improve on
mine. Hint: use the transform matrix to add some rotation into the mix.

Fun with landscape
So far the apps you’ve made were either portrait or landscape but not both. Let’s
change the app so that it shows a completely different user interface when you flip
the device over. When you’re done, the app will look like this:

The app looks completely different in landscape orientation

The landscape screen shows just the artwork for the search results. Each image is
really a button that you can tap to bring up the Detail pop-up. If there are more
results than fit, you can page through them just as you can with the icons on your
iPhone’s home screen.

The to-do list for this section is:

• Create a new view controller and show that when the device is rotated. Hide this
view controller when the device returns to the portrait orientation.

• Put some fake buttons in a UIScrollView, in order to learn how to use scroll
views.

• Add the paging control (the dots at the bottom) so you can page through the
contents of the scroll view.

• Put the artwork images on the buttons. You will have to download these images

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 168

from the iTunes server.

• When the user taps a button, show the Detail pop-up.

Let’s begin by creating a very simple view controller that shows just a text label.

➤ Add a new file to the project using the Cocoa Touch Class template. Name it
LandscapeViewController and make it a subclass of UIViewController.

➤ In Interface Builder, drag a new View Controller into the canvas; put it below
the Search View Controller.

➤ In the Identity inspector, change the Class to LandscapeViewController. Also
type this into the Storyboard ID field.

Giving the view controller an ID

There will be no segue to this view controller. You’ll instantiate this view controller
programmatically when you detect a device rotation, and for that it needs to have
an ID so you can look it up in the storyboard.

➤ Use the View as: panel to change the orientation to landcape.

Changing Interface Builder to landscape

This flips all the scenes in the storyboard to landscape but that is OK – it doesn’t
change what happens when you run the app. Putting Interface Builder in landscape
mode just provides a design aid that makes it easier to layout your UI. What
actually happens when you run the app depends on the orientation the user is
holding the device. The trick is to use Auto Layout constraints to make sure that the
view controllers properly resize to landscape or portrait at runtime.

➤ Change the Background of the view to Black Color.

➤ Drag a new Label into the scene and give it some text. You’re just using this
label to verify that the new view controller shows up in the correct orientation.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 169

➤ Use the Align button to make horizontal and vertical centering constraints for
the label.

Your design should look something like this:

Initial design for the landscape view controller

As you know by now, view controllers have a bunch of methods that are invoked by
UIKit at given times, such as viewDidLoad(), viewWillAppear(), and so on. There is
also a method that is invoked when the device is flipped over. You can override this
method to show (and hide) the new LandscapeViewController.

➤ Add the following method to SearchViewController.swift:

override func willTransition(to newCollection: UITraitCollection,
 with coordinator: UIViewControllerTransitionCoordinator) {
 super.willTransition(to: newCollection, with: coordinator)

 switch newCollection.verticalSizeClass {
 case .compact:
 showLandscape(with: coordinator)
 case .regular, .unspecified:
 hideLandscape(with: coordinator)
 }
}

This method isn’t just invoked on device rotations but any time the trait collection
for the view controller changes. So what is a trait collection? It is, um, a collection
of traits, where a trait can be:

• the horizontal size class

• the vertical size class

• the display scale (is this a Retina screen or not?)

• the user interface idiom (is this an iPhone or iPad?)

• the preferred Dynamic Type font size

• and a few other things

Whenever one or more of these traits change, for whatever reason, UIKit calls

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 170

willTransition(to:with:) to give the view controller a chance to adapt to the new
traits.

What we are interested in here are the size classes. This feature allows you to
design a user interface that is independent of the device’s actual dimensions or
orientation. With size classes, you can create a single storyboard that works across
all devices, from iPhone to iPad – a so-called “universal storyboard”.

So how exactly do these size classes work? Well, there’s two of them, a horizontal
one and a vertical one, and each can have two values: compact or regular.

The combination of these four things creates the following possibilities:

Horizontal and vertical size classes

When an iPhone app is in portrait orientation, the horizontal size class is compact
and the vertical size class is regular.

Upon a rotation to landscape, the vertical size class changes to compact.

What you may not have expected is that the horizontal size class doesn’t change
and stays compact in both portrait and landscape orientations – except on the
iPhone 6s Plus and 7 Plus, that is.

In landscape, the horizontal size class on the Plus is regular. That’s because the
larger dimensions of the iPhone 6s Plus and 7 Plus can fit a split screen in landscape
mode, like the iPad (something you’ll see later on).

What this boils down to is that to detect an iPhone rotation, you just have to look at
how the vertical size class changed. That’s exactly what the switch statement does:

switch newCollection.verticalSizeClass {
case .compact:
 showLandscape(with: coordinator)
case .regular, .unspecified:
 hideLandscape(with: coordinator)
}

If the new vertical size class is .compact the device got flipped to landscape and you

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 171

show the LandscapeViewController. But if the new size class is .regular, the app is
back in portrait and you hide the landscape view again.

The reason the second case statement also checks .unspecified is because switch
statements must always be exhaustive and have cases for all possible
values. .unspecified shouldn’t happen but just in case it does, you also hide the
landscape view. This is another example of defensive programming.

Just to keep things readable, the actual showing and hiding happens in methods of
their own. You will add these next.

In the early years of iOS it was tricky to put more than one view controller on the
same screen. The motto used to be: one screen, one view controller. However, on
devices with larger screens such as the iPad that became inconvenient – you often
want one area of the screen to be controlled by one view controller and a second
area by its own view controller – so now view controllers are allowed to be part of
other view controllers if you follow a few rules.

This is called view controller containment. These APIs are not limited to just the
iPad; you can take advantage of them on the iPhone as well. These days a view
controller is no longer expected to manage a screenful of content, but manages a
“self-contained presentation unit”, whatever that may be for your app.

You’re going to use view controller containment for the LandscapeViewController.

It would be perfectly possible to make a modal segue to this scene and use your
own presentation and animation controllers for the transition. But you’ve already
done that and it’s more fun to play with something new. Besides, it’s useful to learn
about containment and child view controllers.

➤ Add an instance variable to SearchViewController.swift:

var landscapeViewController: LandscapeViewController?

This is an optional because there will only be an active LandscapeViewController
instance if the phone is in landscape orientation. In portrait this will be nil.

➤ Add the following method:

func showLandscape(with coordinator:
 UIViewControllerTransitionCoordinator) {
 // 1
 guard landscapeViewController == nil else { return }
 // 2
 landscapeViewController = storyboard!.instantiateViewController(
 withIdentifier: "LandscapeViewController")
 as? LandscapeViewController
 if let controller = landscapeViewController {
 // 3
 controller.view.frame = view.bounds
 // 4
 view.addSubview(controller.view)

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 172

 addChildViewController(controller)
 controller.didMove(toParentViewController: self)
 }
}

In previous tutorials you would call present(animated, completion) or make a
segue to show the new modal screen. Here, however, you add the new
LandscapeViewController as a child view controller of SearchViewController.

Here’s how it works, step-by-step:

1. It should never happen that the app instantiates a second landscape view when
you’re already looking at one. The guard that landscapeViewController is still
nil codifies this requirement. If it should happen that this condition doesn’t hold
– we’re already showing the landscape view – then we simply return right away.

2. Find the scene with the ID “LandscapeViewController” in the storyboard and
instantiate it. Because you don’t have a segue you need to do this manually.
This is why you filled in that Storyboard ID field in the Identity inspector.

The landscapeViewController instance variable is an optional so you need to
unwrap it before you can continue.

3. Set the size and position of the new view controller. This makes the landscape
view just as big as the SearchViewController, covering the entire screen.

The frame is the rectangle that describes the view’s position and size in terms of
its superview. To move a view to its final position and size you usually set its
frame. The bounds is also a rectangle but seen from the inside of the view.

Because SearchViewController’s view is the superview here, the frame of the
landscape view must be made equal to the SearchViewController’s bounds.

4. These are the minimum required steps to add the contents of one view
controller to another, in this order:

a. First, add the landscape controller’s view as a subview. This places it on top
of the table view, search bar and segmented control.

b. Then tell the SearchViewController that the LandscapeViewController is now
managing that part of the screen, using addChildViewController(). If you forget
this step then the new view controller may not always work correctly.

c. Tell the new view controller that it now has a parent view controller with
didMove(toParentViewController).

In this new arrangement, SearchViewController is the “parent” view controller, and
LandscapeViewController is the “child”. In other words, the Landscape screen is
embedded inside the SearchViewController.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 173

Note: Even though it will appear on top of everything else, the Landscape
screen is not presented modally. It is “contained” in its parent view controller,
and therefore owned and managed by it, not independent like a modal screen.
This is an important distinction.

View controller containment is also used for navigation and tab bar controllers
where the UINavigationController and UITabBarController “wrap around”
their child view controllers.

Usually when you want to show a view controller that takes over the whole
screen you’d use a modal segue. But when you want just a portion of the
screen to be managed by its own view controller you’d make it a child view
controller.

One of the reasons you’re not using a modal segue for the Landscape screen in
this app, even though it is a full-screen view controller, is that the Detail pop-
up already is modally presented and this could potentially cause conflicts.
Besides, I wanted to show you a fun alternative to modal segues.

➤ To get the app to compile, add an empty implementation of the “hide” method:

func hideLandscape(with coordinator:
 UIViewControllerTransitionCoordinator) {
}

By the way, the transition coordinator parameter is needed for doing animations,
which you’ll add soon.

➤ Try it out! Run the app, do a search and flip over your iPhone or the Simulator to
landscape.

The Simulator after flipping to landscape

Remember: to rotate the Simulator, press ⌘ and the arrow keys. It’s possible that
the Simulator won’t flip over right away – it can be buggy like that. When that
happens, press ⌘+arrow key a few more times.

This is not doing any animation yet. As always, first get it to work and only then
make it look pretty.

If you don’t do a search first before rotating to landscape, the keyboard may
remain visible. You’ll fix that shortly. In the mean time you can press ⌘+K to hide

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 174

the keyboard manually.

Flipping back to portrait doesn’t work yet but that’s easily fixed.

➤ Implement the method that will hide the landscape view controller:

func hideLandscape(with coordinator:
 UIViewControllerTransitionCoordinator) {
 if let controller = landscapeViewController {
 controller.willMove(toParentViewController: nil)
 controller.view.removeFromSuperview()
 controller.removeFromParentViewController()
 landscapeViewController = nil
 }
}

This is essentially the inverse of what you did to embed the view controller.

First you call willMove(toParentViewController: nil) to tell the view controller that
it is leaving the view controller hierarchy (it no longer has a parent), then you
remove its view from the screen, and finally removeFromParentViewController()
truly disposes of the view controller.

You also set the instance variable to nil in order to remove the last strong
reference to the LandscapeViewController object now that you’re done with it.

➤ Run the app. Flipping back to portrait should remove the black landscape view
again.

Note: If you press ⌘-right twice, the Simulator first rotates to landscape and
then to portrait, but the LandscapeViewController does not disappear. Why is
that?

It’s a bit hard to see in the Simulator, but what you’re looking at now is not
portrait but portrait upside down. This orientation is not recognized by the app
(see the Device Orientation setting under Deployment Info in the project
settings) and therefore it keeps thinking it’s in landscape.

Press ⌘-right twice again and you’re back in regular portrait.

Whenever I write a new view controller, I like to put a print() in its deinit method
just to make sure the object is properly deallocated when the screen closes.

➤ Add a deinit method to LandscapeViewController.swift:

deinit {
 print("deinit \(self)")
}

➤ Run the app and verify that deinit is indeed being called after rotating back to
portrait.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 175

The transition to the landscape view is a bit abrupt. I don’t want to go overboard
with animations here as the screen is already doing a rotating animation. A simple
crossfade will be sufficient.

➤ Change the showLandscape(with) method to:

func showLandscape(with coordinator:
 UIViewControllerTransitionCoordinator) {
 . . .
 if let controller = landscapeViewController {
 controller.view.frame = view.bounds
 controller.view.alpha = 0

 view.addSubview(controller.view)
 addChildViewController(controller)

 coordinator.animate(alongsideTransition: { _ in
 controller.view.alpha = 1
 }, completion: { _ in
 controller.didMove(toParentViewController: self)
 })
 }
}

You’re still doing the same things as before, except now the landscape view starts
out completely see-through (alpha = 0) and slowly fades in while the rotation takes
place until it’s fully visible (alpha = 1).

Now you see why the UIViewControllerTransitionCoordinator object is needed, so
your animation can be performed alongside the rest of the transition from the old
traits to the new. This ensures the animations run as smoothly as possible.

The call to animate(alongsideTransition, completion) takes two closures: the first
is for the animation itself, the second is a “completion handler” that gets called
after the animation finishes. The completion handler gives you a chance to delay
the call to didMove(toParentViewController) until the animation is over.

Both closures are given a “transition coordinator context” parameter (the same
context that animation controllers get) but it’s not very interesting here and you
use the _ wildcard to ignore it.

Note: You don’t have to write self.controller inside these closures because
controller is not an instance variable. It is a local constant that is valid only
inside the if let statement. self is only used to refer to instance variables
and methods, or the view controller object itself, but is never used for locals.

➤ Make likewise changes to hideLandscape(with):

func hideLandscape(with coordinator:
 UIViewControllerTransitionCoordinator) {
 if let controller = landscapeViewController {

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 176

 controller.willMove(toParentViewController: nil)

 coordinator.animate(alongsideTransition: { _ in
 controller.view.alpha = 0
 }, completion: { _ in
 controller.view.removeFromSuperview()
 controller.removeFromParentViewController()
 self.landscapeViewController = nil
 })
 }
}

This time you fade out the view (back to alpha = 0). You don’t remove the view and
the controller until the animation is completely done.

➤ Try it out. The transition between the portrait and landscape views should be a
lot smoother now.

The transition from portrait to landscape

Tip: To see the transition animation in slow motion, select Debug → Slow
Animations from the Simulator menu bar.

Note: The order of operations for removing a child view controller is exactly
the other way around from adding a child view controller, except for the calls
to willMove and didMove(toParentViewController).

The rules for view controller containment say that when adding a child view
controller, the last step is to call didMove(toParentViewController). UIKit does
not know when to call this method, as that needs to happen after any of your
animations. You are responsible for sending the “did move to parent” message
to the child view controller once the animation completes.

There is also a willMove(toParentViewController) but that gets called on your
behalf by addChildViewController() already, so you’re not supposed to do that
yourself.

The rules are opposite when removing the child controller. First you should call
willMove(toParentViewController: nil) to let the child view controller know
that it’s about to be removed from its parent. The child view controller
shouldn’t actually be removed until the animation completes, at which point
you call removeFromParentViewController(). That method will then take care of
sending the “did move to parent” message.

You can find these rules in the API documentation for UIViewController.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 177

Hiding the keyboard and pop-up
There are two more small tweaks to make. Maybe you already noticed that when
rotating the app while the keyboard is showing, the keyboard doesn’t go away.

The keyboard is still showing in landscape mode

Exercise. See if you can fix that yourself.

Answer: You’ve done something similar already after the user taps the Search
button. The code is exactly the same here.

➤ Add the following line to showLandscape(with):

func showLandscape(with coordinator:
 UIViewControllerTransitionCoordinator) {
 . . .
 coordinator.animate(alongsideTransition: { _ in
 controller.view.alpha = 1
 self.searchBar.resignFirstResponder() // add this line
 }, completion: { _ in
 . . .
 })
 }
}

Now the keyboard disappears as soon as you flip the device. I found it looks best if
you call resignFirstResponder() inside the animate-alongside-transition closure.
After all, hiding the keyboard also happens with an animation.

Speaking of things that stay visible, what happens when you tap a row in the table
view and then rotate to landscape? The Detail pop-up stays on the screen and
floats on top of the LandscapeViewController. I find that a little strange. It would be
better if the app dismissed the pop-up before rotating.

Exercise. See if you can fix that one.

Answer: The Detail pop-up is presented modally with a segue, so you can call
dismiss(animated, completion) to dismiss it, just like you do in the close() action
method.

There’s a complication: you should only dismiss the Detail screen when it is actually
visible. For that you can look at the presentedViewController property. This returns

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 178

a reference to the current modal view controller, if any. If presentedViewController
is nil there isn’t anything to dismiss.

➤ Add the following code inside the animate(alongsideTransition) closure in
showLandscape(with):

if self.presentedViewController != nil {
 self.dismiss(animated: true, completion: nil)
}

➤ Run the app and tap on a search result, then flip to landscape. The pop-up
should now fly off the screen. When you return to portrait, the pop-up is nowhere
to be seen.

If you look really carefully while the screen rotates, you can see a glitch at the right
side of the screen. The gradient view doesn’t appear to stretch to fill up the extra
space:

There is a gap next to the gradient view

(Press ⌘+T to turn on slow animations in the Simulator so you can clearly see this
happening.)

It’s only a small detail but we can’t have such imperfections in our apps!

The solution is to pin the GradientView to the edges of the window so that it will
always stretch along with it. But you didn’t create GradientView in Interface
Builder… so how do you give it constraints?

It is possible to create constraints in code, using the NSLayoutConstraint class, but
there is an easier solution: you can simply change the GradientView’s autoresizing
behavior.

Autoresizing is what iOS developers used before Auto Layout existed. It’s simpler to
use but also less powerful. You’ve already used autoresizing in the MyLocations app
where you enabled or disabled the different “springs and struts” for your views in
Interface Builder. It’s very easy to do the same thing from code.

Using the autoresizingMask property you can tell a view what it should do when its
superview changes size. You have a variety of options, such as: do nothing, stick to
a certain edge of the superview, or change in size proportionally.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 179

The possibilities are much more limited than what you can do with Auto Layout, but
for many scenarios autoresizing is good enough.

The easiest place to set this autoresizing mask is in GradientView’s init methods.

➤ Add the following line to init(frame) and init?(coder) in GradientView.swift:

autoresizingMask = [.flexibleWidth , .flexibleHeight]

This tells the view that it should change both its width and its height proportionally
when the superview it belongs to resizes (due to being rotated or otherwise).

In practice this means the GradientView will always cover the same area that its
superview covers and there should be no more gaps, even if the device gets
rotated.

➤ Try it out! The gradient now always covers the whole screen.

The Detail pop-up flying up and out the screen looks a little weird in combination
with the rotation animation. There’s too much happening on the screen at once, to
my taste. Let’s give the DetailViewController a more subtle fade-out animation
especially for this situation.

When you tap the X button to dismiss the pop-up, you’ll still make it fly out of the
screen. But when it is automatically dismissed upon rotation, the pop-up will fade
out with the rest of the table view instead.

You’ll give DetailViewController a property that that specifies how it will animate
the pop-up’s dismissal. You can use an enum for this.

➤ Add the following to DetailViewController.swift, inside the class:

enum AnimationStyle {
 case slide
 case fade
}

var dismissAnimationStyle = AnimationStyle.fade

This defines a new enum named AnimationStyle. An enum, or enumeration, is simply
a list of possible values. The AnimationStyle enum has two values, slide and fade.
Those are the animations the Detail pop-up can perform when dismissed.

The dismissAnimationStyle variable determines which animation is chosen. This
variable is of type AnimationStyle, so it can only contain one of the values from that
enum. By default it is .fade, the animation that will be used when rotating to
landscape.

Note: The full name of the enum is DetailViewController.AnimationStyle
because it sits inside the DetailViewController class.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 180

It’s a good idea to keep the things that are closely related to a particular class,
such as this enum, inside the definition for that class. That puts them inside
the class’s namespace.

Doing this allows you to also add a completely different AnimationStyle enum
to one of the other view controllers, without running into naming conflicts.

➤ In the close() method set the animation style to .slide, so that this keeps using
the animation you’re already familiar with:

@IBAction func close() {
 dismissAnimationStyle = .slide
 dismiss(animated: true, completion: nil)
}

➤ In the extension for the transitioning delegate, change the method that vends
the animation controller for dismissing the pop-up to the following:

func animationController(forDismissed dismissed: UIViewController) ->
 UIViewControllerAnimatedTransitioning? {
 switch dismissAnimationStyle {
 case .slide:
 return SlideOutAnimationController()
 case .fade:
 return FadeOutAnimationController()
 }
}

Instead of always returning a new SlideOutAnimationController instance, it now
looks at the value from dismissAnimationStyle. If it is .fade, then it returns a new
FadeOutAnimationController object. You still have to write that class.

➤ Add a new Swift File to the project, named FadeOutAnimationController.

➤ Replace the source code of that new file with:

import UIKit

class FadeOutAnimationController: NSObject,
 UIViewControllerAnimatedTransitioning {
 func transitionDuration(using transitionContext:
 UIViewControllerContextTransitioning?) -> TimeInterval {
 return 0.4
 }

 func animateTransition(using transitionContext:
 UIViewControllerContextTransitioning) {
 if let fromView = transitionContext.view(
 forKey: UITransitionContextViewKey.from) {
 let duration = transitionDuration(using: transitionContext)
 UIView.animate(withDuration: duration, animations: {
 fromView.alpha = 0
 }, completion: { finished in

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 181

 transitionContext.completeTransition(finished)
 })
 }
 }
}

This is mostly the same as the other animation controllers. The actual animation
simply sets the view’s alpha value to 0 in order to fade it out.

➤ Run the app, bring up the Detail pop-up and rotate to landscape. The pop-up
should now fade out while the landscape view fades in. (Enable slow animations to
clearly see what is going on.)

The pop-up fades out instead of flying away

And that does it. If you wanted to create more animations that can be used on
dismissal, you only have to add a new value to the AnimationStyle enum and check
for it in the animationController(forDismissed) method. And build a new animation
controller, of course.

That concludes the first version of the landscape screen. It doesn’t do much yet,
but it’s already well integrated with the rest of the app. That’s worthy of a commit,
methinks.

Adding the scroll view
If an app has more to show than can fit on the screen, you can use a scroll view,
which allows the user to drag the content up and down or left and right.

You’ve already been working with scroll views all this time without knowing it: the
UITableView object extends from UIScrollView.

In this section you’re going to use a scroll view of your own, in combination with a
paging control, so you can show the artwork for all the search results even if
there are more images than fit on the screen at once.

➤ Open the storyboard and delete the label from the Landscape View Controller.

➤ Now drag a new Scroll View into the scene. Make it as big as the screen (568 by
320 points in landscape).

➤ Drag a new Page Control object into the scene (make sure you pick Page
Control and not Page View Controller).

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 182

This gives you a small view with three white dots. Place it bottom center. The exact
location doesn’t matter because you’ll move it to the right position later.

Important: Do not place the Page Control inside the Scroll View. They should be at
the same level in the view hierarchy:

The Page Control should be a “sibling” of the Scroll View, not a child

If you did drop your Page Control inside the Scroll View instead of on top, then you
can rearrange them inside the document pane.

That concludes the design of the landscape screen. The rest you will do in code, not
in Interface Builder.

The final design of the landscape scene

Note: On macOS Sierra the scroll view doesn’t say “UIScrollView” in the
storyboard. It just appears as a transparent rectangle.

The other view controllers all employ Auto Layout to resize them to the dimensions
of the user’s device, but here you’re going to take a different approach. Instead of
pinning the Scroll View to the sides of the scene, you’ll disable Auto Layout for this
view controller and do the entire layout programmatically. So you don’t need to pin
anything in the storyboard.

You do need to hook up these controls to outlets, of course.

➤ Add these outlets to LandscapeViewController.swift, and connect them in
Interface Builder:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 183

@IBOutlet weak var scrollView: UIScrollView!
@IBOutlet weak var pageControl: UIPageControl!

Next up you’ll disable Auto Layout for this view controller. The storyboard has a
“Use Auto Layout” checkbox but you cannot use that. It would turn off Auto Layout
for all the view controllers, not just this one.

➤ Replace LandscapeViewController.swift’s viewDidLoad() method with:

override func viewDidLoad() {
 super.viewDidLoad()

 view.removeConstraints(view.constraints)
 view.translatesAutoresizingMaskIntoConstraints = true

 pageControl.removeConstraints(pageControl.constraints)
 pageControl.translatesAutoresizingMaskIntoConstraints = true

 scrollView.removeConstraints(scrollView.constraints)
 scrollView.translatesAutoresizingMaskIntoConstraints = true
}

Remember how, if you don’t add make constraints of your own, Interface Builder
will give the views automatic constraints? Well, those automatic constraints get in
the way if you’re going to do your own layout. That’s why you need to remove
these unwanted constraints from the main view, pageControl, and scrollView first.

You also do translatesAutoresizingMaskIntoConstraints = true. That allows you to
position and size your views manually by changing their frame property.

When Auto Layout is enabled, you’re not really supposed to change the frame
yourself – you can only indirectly move views into position by creating constraints.
Modifying the frame by hand can cause conflicts with the existing constraints and
bring all sorts of trouble (you don’t want to make Auto Layout angry!).

For this view controller it’s much more convenient to manipulate the frame property
directly than it is making constraints (especially when you’re placing the buttons for
the search results), which is why you’re disabling Auto Layout.

Note: Auto Layout doesn’t really get disabled, but with the “translates
autoresizing mask” option set to true, UIKit will convert your manual layout
code into the proper constraints behind the scenes. That’s also why you
removed the automatic constraints because they will conflict with the new
ones, causing your app to crash.

Now that Auto Layout is out of the way, you can do your own layout. That happens
in the method viewWillLayoutSubviews().

➤ Add this new method:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 184

override func viewWillLayoutSubviews() {
 super.viewWillLayoutSubviews()

 scrollView.frame = view.bounds

 pageControl.frame = CGRect(
 x: 0,
 y: view.frame.size.height - pageControl.frame.size.height,
 width: view.frame.size.width,
 height: pageControl.frame.size.height)
}

The viewWillLayoutSubviews() method is called by UIKit as part of the layout phase
of your view controller when it first appears on the screen. It’s the ideal place for
changing the frames of your views by hand.

The scroll view should always be as large as the entire screen, so you make its
frame equal to the main view’s bounds.

The page control is located at the bottom of the screen, and spans the width of the
screen. If this calculation doesn’t make any sense to you, then try to sketch what
happens on a piece of paper. It’s what I usually do when writing my own layout
code.

Note: Remember that the bounds describe the rectangle that makes up the
inside of a view, while the frame describes the outside of the view.

The scroll view’s frame is the rectangle seen from the perspective of the main
view, while the scroll view’s bounds is the same rectangle from the perspective
of the scroll view itself.

Because the scroll view and page control are both children of the main view,
their frames sit in the same coordinate space as the bounds of the main view.

➤ Run the app and flip to landscape. Nothing much happens yet: the screen has
the page control at the bottom (the dots) but it still mostly black.

For the scroll view to do anything you have to add some content to it.

➤ Add the following lines to viewDidLoad():

scrollView.backgroundColor = UIColor(patternImage:
 UIImage(named: "LandscapeBackground")!)

This puts an image on the scroll view’s background so you can actually see
something happening when you scroll through it.

An image? But you’re setting the backgroundColor property, which is a UIColor, not
a UIImage?! Yup, that’s true, but UIColor has a cool trick that lets you use a tile-able
image for a color.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 185

If you take a peek at the LandscapeBackground image in the asset catalog you’ll
see that it is a small square. By setting this image as a pattern image on the
background you get a repeatable image that fills the whole screen. You can use tile-
able images anywhere you can use a UIColor.

Exercise: Why is the ! needed behind the call to UIImage(named: …)?

Answer: UIImage(named) is a failable initializer and therefore returns an optional.
Before you can use it as an actual UIImage object you need to unwrap it somehow.
Here you know that the image will always exist so you can force unwrap with !.

➤ Also add the following line to viewDidLoad():

scrollView.contentSize = CGSize(width: 1000, height: 1000)

It is very important when dealing with scroll views that you set the contentSize
property. This tells the scroll view how big its insides are. You don’t change the
frame (or bounds) of the scroll view if you want its insides to be bigger, you set the
contentSize property instead.

People often forget this step and then they wonder why their scroll view doesn’t
scroll. Unfortunately, you cannot set contentSize from Interface Builder, so it must
be done from code.

➤ Run the app and try some scrolling:

The scroll view now has a background image and it can scroll

If the dots at the bottom also move while scrolling, then you’ve placed the page
control inside the scroll view. Open the storyboard and in the outline pane drag
Page Control below Scroll View instead.

The page control itself doesn’t do anything yet. Before you can make that work, you
first have to add some content to the scroll view.

Adding buttons for the search results
The idea is to show the search results in a grid:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 186

Each of these results is really a button. Before you can place these buttons on the
screen, you need to calculate how many will fit on the screen at once. Easier said
than done, because different iPhone models have different screen sizes.

Time for some math! Let’s assume the app runs on a 3.5-inch device. In that case
the scroll view is 480 points wide by 320 points tall. It can fit 3 rows of 5 columns if
you put each search result in a rectangle of 96 by 88 points.

That comes to 3×5 = 15 search results on the screen at once. A search may return
up to 200 results, so obviously there is not enough room for everything and you will
have to spread out the results over several pages.

One page contains 15 buttons. For the maximum number of results you will need
200 / 15 = 13.3333 pages, which rounds up to 14 pages. That last page will only
be filled for one-third with results.

The arithmetic for a 4-inch device is similar. Because the screen is wider – 568
instead of 480 points – it has room for an extra column, but only if you shrink each
rectangle to 94 points instead of 96. That also leaves 568 – 94×6 = 4 points to
spare.

The 4.7-inch iPhone 6s and 7 have room for 7 columns plus some leftover vertical
space, and the 5.5-inch iPhone 6s Plus and 7 Plus can fit yet another column plus
an extra row.

That’s a lot of different possibilities!

You need to put all of this into an algorithm in LandscapeViewController so it can
calculate how big the scroll view’s contentSize has to be. It will also need to add a
UIButton object for each search result.

Once you have that working, you can put the artwork image inside that UIButton.

Of course, this means the app first needs to give the array of search results to
LandscapeViewController so it can use them for its calculations.

➤ Let’s add a property for this, in LandscapeViewController.swift:

var searchResults = [SearchResult]()

Initially this has an empty array. SearchViewController gives it the real array upon

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 187

rotation to landscape.

➤ Assign the array to the new property in SearchViewController.swift:

func showLandscape(with coordinator:
 UIViewControllerTransitionCoordinator) {
 . . .
 if let controller = landscapeViewController {
 controller.searchResults = searchResults // add this line
 controller.view.frame = view.bounds
 . . .

You have to be sure to fill up searchResults before you access the view property
from the LandscapeViewController, because that will trigger the view to be loaded
and performs viewDidLoad().

The view controller will be reading from the searchResults array in viewDidLoad() to
build up the contents of its scroll view. But if you access controller.view before
setting searchResults, this property will still be nil and there is nothing to make
buttons for. The order in which you do things matters!

➤ Switch back to LandscapeViewController.swift. From viewDidLoad() remove
the line that sets scrollView.contentSize. That was just for testing.

Now let’s go make those buttons.

➤ Add a new instance variable:

private var firstTime = true

The purpose for this variable will become clear in a moment. You need to initialize it
with the value true.

Private parts
You are declaring the firstTime instance variable as private. You’re doing this
because firstTime is an internal piece of state that only LandscapeViewController
cares about. It should not be visible to other objects.

You don’t want the other objects in your app to know about the existence of
firstTime, or worse, actually try to use this variable. Strange things are bound to
happen if some other view controller changes the value of firstTime while
LandscapeViewController doesn’t expect that.

We haven’t talked much about the distinction between interface and
implementation yet, but what an object shows on the outside is different from what
it has on the inside. That’s done on purpose because its internals – the so-called

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 188

implementation details – are not interesting to anyone else, and are often even
dangerous to expose (messing around with them can crash the app).

It is considered good programming practice to hide as much as possible inside the
object and only show a few things on the outside. The firstTime variable is only
important to the insides of LandscapeViewController. Therefore it should not be part
of its public interface, so that other objects can’t see firstTime when they look at
LandscapeViewController.

To make certain variables and methods visible only inside your own class, you
declare them to be private. That removes them from the object’s public interface.

Exercise: Find other variables and methods in the app that can be made private.

➤ Add the following lines to the bottom of viewWillLayoutSubviews():

if firstTime {
 firstTime = false
 tileButtons(searchResults)
}

This calls a new method, tileButtons(), that performs the math and places the
buttons on the screen in neat rows and columns. This needs to happen just once,
when the LandscapeViewController is added to the screen.

You may think that viewDidLoad() would be a good place for that, but at the point
in the view controller’s lifecycle when viewDidLoad() is called, the view is not on the
screen yet and has not been added into the view hierarchy. At this time it doesn’t
know how large it should be. Only after viewDidLoad() is done does the view get
resized to fit the actual screen.

So you can’t use viewDidLoad() for that. The only safe place to perform calculations
based on the final size of the view – that is, any calculations that use the view’s
frame or bounds – is in viewWillLayoutSubviews().

A warning: viewWillLayoutSubviews() may be invoked more than once! For
example, it’s also called when the landscape view gets removed from the screen
again. You use the firstTime variable to make sure you only place the buttons
once.

➤ Add the new tileButtons() method. It’s a whopper, so we’ll take it piece-by-
piece.

private func tileButtons(_ searchResults: [SearchResult]) {

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 189

 var columnsPerPage = 5
 var rowsPerPage = 3
 var itemWidth: CGFloat = 96
 var itemHeight: CGFloat = 88
 var marginX: CGFloat = 0
 var marginY: CGFloat = 20

 let scrollViewWidth = scrollView.bounds.size.width

 switch scrollViewWidth {
 case 568:
 columnsPerPage = 6
 itemWidth = 94
 marginX = 2

 case 667:
 columnsPerPage = 7
 itemWidth = 95
 itemHeight = 98
 marginX = 1
 marginY = 29

 case 736:
 columnsPerPage = 8
 rowsPerPage = 4
 itemWidth = 92

 default:
 break
 }

 // TODO: more to come here
}

First, the method must decide on how big the grid squares will be and how many
squares you need to fill up each page. There are four cases to consider, based on
the width of the screen:

• 480 points, 3.5-inch device (used when you run the app on an iPad). A single
page fits 3 rows (rowsPerPage) of 5 columns (columnsPerPage). Each grid square
is 96 by 88 points (itemWidth and itemHeight). The first row starts at Y = 20
(marginY).

• 568 points, 4-inch device (all iPhone 5 models, iPhone SE). This has 3 rows of 6
columns. To make it fit, each grid square is now only 94 points wide. Because
568 doesn’t evenly divide by 6, the marginX variable is used to adjust for the 4
points that are left over (2 on each side of the page).

• 667 points, 4.7-inch device (iPhone 6, 6s, 7). This still has 3 rows but 7
columns. Because there’s some extra vertical space, the rows are higher (98
points) and there is a larger margin at the top.

• 736 points, 5.5-inch device (iPhone 6/6s/7 Plus). This device is huge and can
house 4 rows of 8 columns.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 190

The variables at the top of the method keep track of all these measurements.

Note: Wouldn’t it be possible to come up with a nice formula that calculates all
this stuff for you, rather than hard-coding these sizes and margin values?
Probably, but it won’t be easy. There are two things you want to optimize for:
getting the maximum number of rows and columns on the screen, but at the
same time not making the grid squares too small. Give it a shot if you think
you can solve this puzzle! (Let me know if you do – I might put your solution
in the next book update.)

➤ Add the following lines to tileButtons():

let buttonWidth: CGFloat = 82
let buttonHeight: CGFloat = 82
let paddingHorz = (itemWidth - buttonWidth)/2
let paddingVert = (itemHeight - buttonHeight)/2

You’ve already determined that each search result gets a grid square of give-or-
take 96 by 88 points (depending on the device), but that doesn’t mean you need to
make the buttons that big as well.

The image you’ll put on the buttons is 60×60 pixels, so that leaves quite a gap
around the image. After playing with the design a bit, I decided that the buttons
will be 82×82 points (buttonWidth and buttonHeight), leaving a small amount of
padding between each button and its neighbors (paddingHorz and paddingVert).

The dimensions of the buttons in the 5x3 grid

Now you can loop through the array of search results and make a new button for
each SearchResult object.

➤ Add the following lines:

var row = 0
var column = 0
var x = marginX
for (index, searchResult) in searchResults.enumerated() {
 // 1
 let button = UIButton(type: .system)

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 191

 button.backgroundColor = UIColor.white
 button.setTitle("\(index)", for: .normal)
 // 2
 button.frame = CGRect(
 x: x + paddingHorz,
 y: marginY + CGFloat(row)*itemHeight + paddingVert,
 width: buttonWidth, height: buttonHeight)
 // 3
 scrollView.addSubview(button)
 // 4
 row += 1
 if row == rowsPerPage {
 row = 0; x += itemWidth; column += 1

 if column == columnsPerPage {
 column = 0; x += marginX * 2
 }
 }
}

Here is how this works:

1. Create the UIButton object. For debugging purposes you give each button a title
with the array index. If there are 200 results in the search, you also should end
up with 200 buttons. Setting the index on the button will help to verify this.

2. When you make a button by hand you always have to set its frame. Using the
measurements you figured out earlier, you determine the position and size of
the button. Notice that CGRect’s fields all have the CGFloat type but row is an
Int. You need to convert row to a CGFloat before you can use it in the
calculation.

3. You add the new button object as a subview to the UIScrollView. After the first
18 or so buttons (depending on the screen size) this places any subsequent
button out of the visible range of the scroll view, but that’s the whole point. As
long as you set the scroll view’s contentSize accordingly, the user can scroll to
get to those other buttons.

4. You use the x and row variables to position the buttons, going from top to
bottom (by increasing row). When you’ve reached the bottom (row equals
rowsPerPage), you go up again to row 0 and skip to the next column (by
increasing the column variable).

When the column reaches the end of the screen (equals columnsPerPage), you
reset it to 0 and add any leftover space to x (twice the X-margin). This only has
an effect on 4-inch and 4.7-inch screens; for the others marginX is 0.

Note that in Swift you can put multiple statements on a single line by separating
them with a semicolon. I did that to save some space.

If this sounds like hocus pocus to you, I suggest you play around a bit with these
calculations to gain insight into how they work. It’s not rocket science but it does

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 192

require some mental gymnastics. Tip: Sketching the process on paper can help!

Note: By the way, did you notice what happened in the for in loop?
for (index, searchResult) in searchResults.enumerated() {

This for in loop steps through the SearchResult objects from the array, but
with a twist. By doing for in enumerated(), you get a tuple containing not only
the next SearchResult object but also its index in the array.

A tuple is nothing more than a temporary list with two or more items in it.
Here, the tuple is (index, searchResult). This is a neat trick to loop through
an array and get both the objects and their indices.

➤ Finally, add the last part of this very long method:

let buttonsPerPage = columnsPerPage * rowsPerPage
let numPages = 1 + (searchResults.count - 1) / buttonsPerPage

scrollView.contentSize = CGSize(
 width: CGFloat(numPages)*scrollViewWidth,
 height: scrollView.bounds.size.height)

print("Number of pages: \(numPages)")

At the end of the method you calculate the contentSize for the scroll view based on
how many buttons fit on a page and the number of SearchResult objects.

You want the user to be able to “page” through these results, rather than simply
scroll (a feature that you’ll enable shortly) so you should always make the content
width a multiple of the screen width (480, 568, 667 or 736 points).

With a simple formula you can then determine how many pages you need.

Note: Dividing an integer value by an integer always results in an integer. If
buttonsPerPage is 18 (3 rows × 6 columns) and there are fewer than 18 search
results, searchResults.count / buttonsPerPage is 0.

It’s important to realize that numPages will never have a fractional value
because all the variables involved in the calculation are Ints, which makes
numPages an Int too.

That’s why the formula is 1 + (searchResults.count – 1) / buttonsPerPage.

If there are 18 results, exactly enough to fill a single page, numPages = 1 +
17/18 = 1 + 0 = 1. But if there are 19 results, the 19th result needs to go on
the second page, and numPages = 1 + 18/18 = 1 + 1 = 2. Plug in some other
values for yourself to prove this formula is correct.

I also threw in a print() for good measure, so you can verify that you really end up
with the right amount of pages.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 193

➤ Run the app, do a search, and flip to landscape. You should now see a whole
bunch of buttons:

The landscape view has buttons

Scroll all the way to the right and it looks like this (on the iPhone SE):

The last page of the search results

That is 200 buttons indeed (you started counting at 0, remember?).

Just to make sure that this logic works properly you should test a few different
scenarios. What happens when there are fewer results than 18 (the amount that fit
on a single page on the iPhone 5)? What happens when there are exactly 18 search
results? How about 19, one more than can go on a single page?

The easiest way to create this situation is to change the &limit parameter in the
search URL.

Exercise. Try these situations for yourself and see what happens.

➤ Also test when there are no search results. The landscape view should now be
empty. In a short while you’ll add a “Nothing Found” label to this screen as well.

Note: Xcode currently gives a warning “Immutable value searchResult was
never used; consider replacing with _”. That warning will go away once you
use the searchResult variable in the next section.

Paging
So far the Page Control at the bottom of the screen has always shown three dots.
And there wasn’t much paging to be done on the scroll view either.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 194

In case you’re wondering what “paging” means: if the user has dragged the scroll
view a certain amount, it should snap to a new page.

With paging enabled, you can quickly flick through the contents of a scroll view,
without having to drag it all the way. You’re no doubt familiar with this effect
because it is what the iPhone uses on its springboard. Many other apps use the
effect too, such as the Weather app that uses paging to flip between the cards for
different cities.

➤ Go to the LandscapeViewController in the storyboard and check the Paging
Enabled option for the scroll view (in the Attributes inspector).

There, that was easy. Now run the app and the scroll view will let you page rather
than scroll. That’s cool but you also need to do something with the page control at
the bottom.

➤ Add this line to viewDidLoad():

pageControl.numberOfPages = 0

This effectively hides the page control, which is what you want to do when there are
no search results (yet).

➤ Add the following lines to the bottom of tileButtons():

pageControl.numberOfPages = numPages
pageControl.currentPage = 0

This sets the number of dots that the page control displays to the number of pages
that you calculated.

The active dot (the white one) needs to be synchronized with the active page in the
scroll view. Currently, it never changes unless you tap in the page control and even
then it has no effect on the scroll view.

To get this to work, you’ll have to make the page control talk to the scroll view, and
vice versa. The view controller must become the delegate of the scroll view so it will
be notified when the user is flicking through the pages.

➤ Add the following to the very bottom of LandscapeViewController.swift:

extension LandscapeViewController: UIScrollViewDelegate {
 func scrollViewDidScroll(_ scrollView: UIScrollView) {
 let width = scrollView.bounds.size.width
 let currentPage = Int((scrollView.contentOffset.x + width/2)/width)
 pageControl.currentPage = currentPage
 }
}

This is one of the UIScrollViewDelegate methods. You figure out what the index of
the current page is by looking at the contentOffset property of the scroll view. This

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 195

property determines how far the scroll view has been scrolled and is updated while
you’re dragging the scroll view.

Unfortunately, the scroll view doesn’t simply tell us, “The user has flipped to page
X”, and so you have to calculate this yourself. If the content offset gets beyond
halfway on the page (width/2), the scroll view will flick to the next page. In that
case, you update the pageControl’s active page number.

You also need to know when the user taps on the Page Control so you can update
the scroll view. There is no delegate for this but you can use a regular @IBAction
method.

➤ Add the action method:

@IBAction func pageChanged(_ sender: UIPageControl) {
 scrollView.contentOffset = CGPoint(
 x: scrollView.bounds.size.width * CGFloat(sender.currentPage), y: 0)
}

This works the other way around: when the user taps in the Page Control, its
currentPage property gets updated. You use that to calculate a new contentOffset
for the scroll view.

➤ In the storyboard, Ctrl-drag from the Scroll View to Landscape View Controller
and select delegate.

➤ Also Ctrl-drag from the Page Control to the Landscape View Controller and
select pageChanged: under Sent Events.

➤ Try it out, the page control and the scroll view should now be in sync.

The transition from one page to another after tapping in the page control is still a
little abrupt, though. An animation would help here.

Exercise. See if you can animate what happens in pageChanged().

Answer: You can simply put the above code in an animation block:

@IBAction func pageChanged(_ sender: UIPageControl) {
 UIView.animate(withDuration: 0.3, delay: 0,
 options: [.curveEaseInOut], animations: {
 self.scrollView.contentOffset = CGPoint(
 x: self.scrollView.bounds.size.width * CGFloat(sender.currentPage),
 y: 0)
 },
 completion: nil)
}

You’re using a version of the UIView animation method that allows you to specify
options because the “Ease In, Ease Out” timing (.curveEaseInOut) looks good here.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 196

We’ve got paging!

➤ This is a good time to commit.

Downloading artwork on the buttons
First let’s give the buttons a nicer look.

➤ Replace the button creation code in tileButtons() with:

let button = UIButton(type: .custom)
button.setBackgroundImage(UIImage(named: "LandscapeButton"),
 for: .normal)

Instead of a regular button you’re now making a .custom one, and you’re giving it a
background image instead of a title.

If you run the app, it will look like this:

The buttons now have a custom background image

Now you will have to download the artwork images (if they haven’t been already
downloaded and cached yet by the table view) and put them on the buttons.

Problem: You’re dealing with UIButtons here, not UIImageViews, so you cannot
simply use that handy extension from earlier. Fortunately, the code is very similar!

➤ Add a new method to LandscapeViewController.swift:

private func downloadImage(for searchResult: SearchResult,
 andPlaceOn button: UIButton) {
 if let url = URL(string: searchResult.artworkSmallURL) {
 let downloadTask = URLSession.shared.downloadTask(with: url) {
 [weak button] url, response, error in

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 197

 if error == nil, let url = url,
 let data = try? Data(contentsOf: url),
 let image = UIImage(data: data) {
 DispatchQueue.main.async {
 if let button = button {
 button.setImage(image, for: .normal)
 }
 }
 }
 }
 downloadTask.resume()
 }
}

This looks very much like what you did in the UIImageView extension.

First you get a URL object with the link to the 60×60-pixel artwork, and then you
create a download task. Inside the completion handler you put the downloaded file
into a UIImage, and if all that succeeds, use DispatchQueue.main.async to place the
image on the button.

➤ Add the following line to tileButtons() to call this new method, right after where
you create the button:

downloadImage(for: searchResult, andPlaceOn: button)

And that should do it. Run the app and you’ll get some cool-looking buttons:

Showing the artwork on the buttons

Note: The Xcode warning about searchResult is gone, but now it gives the
same message for the index variable. Xcode doesn’t like it if you declare
variables but not use them. You’ll use index again later in this tutorial but in
the mean time you can replace it by the _ wildcard symbol to stop Xcode from
complaining.

It’s always a good idea to clean up after yourself, also in programming. Imagine
this: what would happen if the app is still downloading images and the user flips
back to portrait mode?

At that point, the LandscapeViewController is deallocated but the image downloads

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 198

keep going. That is exactly the sort of situation that can crash your app if you don’t
handle it properly.

To avoid ownership cycles, you capture the button with a weak reference. When
LandscapeViewController is deallocated, so are the buttons and the completion
handler’s captured button reference automatically becomes nil. The if let inside
the DispatchQueue.main.async block will now safely skip button.setImage(for). No
harm done. That’s why you wrote [weak button].

However, to conserve resources the app should really stop downloading these
images because they end up nowhere. Otherwise it’s just wasting bandwidth and
battery life, and users don’t take too kindly to apps that do.

➤ Add a new instance variable to LandscapeViewController.swift:

private var downloadTasks = [URLSessionDownloadTask]()

This array keeps track of all the active URLSessionDownloadTask objects.

➤ Add the following line to the bottom of downloadImage(for:andPlaceOn:), right
after where you resume the download task:

downloadTasks.append(downloadTask)

➤ And finally, tell deinit to cancel any operations that are still on the way:

deinit {
 print("deinit \(self)")
 for task in downloadTasks {
 task.cancel()
 }
}

This will stop the download for any button whose image was still pending or in
transit. Good job, partner!

➤ Commit your changes.

Exercise. Despite what the iTunes web service promises, not all of the artwork is
truly 60×60 pixels. Some of it is bigger, some is not even square, and so it might
not always fit nicely in the button. Your challenge is to use the image sizing code
from MyLocations to always resize the image to 60×60 points before you put it on
the button. Note that we’re talking points here, not pixels – on Retina devices the
image should actually end up being 120×120 or even 180×180 pixels big.

You can find the project files for the app up to this point under 07 - Landscape in
the tutorial’s Source Code folder.

Note: In this section you learned how to create a grid-like view using a
UIScrollView. iOS comes with a versatile class, UICollectionView, that lets you

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 199

do the same thing – and much more! – without having to resort to the sort of
math you did in tileButtons(). To learn more about UICollectionView, check
out the website: raywenderlich.com/tag/collection-view

Refactoring the search
If you start a search and switch to landscape while the results are still downloading,
the landscape view will remain empty. It would also be nice to show an activity
spinner on that screen while the search is taking place. You can reproduce this
situation by artificially slowing down your network connection using the Network
Link Conditioner tool.

So how can LandscapeViewController tell what state the search is in? Its
searchResults array will be empty if no search was done yet and have zero or more
SearchResult objects after a successful search.

Just by looking at the array object you cannot determine whether the search is still
going, or whether it has finished but nothing was found. In both cases, the
searchResults array will have a count of 0.

You need a way to determine whether the search is still busy. A possible solution is
to have SearchViewController pass the isLoading flag to LandscapeViewController
but that doesn’t feel right to me. This is known as a “code smell”, a hint at a deeper
problem with the design of the program.

Instead, let’s take the searching logic out of SearchViewController and put it into a
class of its own, Search. Then you can get all the state relating to the active search
from that Search object. Time for some more refactoring!

➤ If you want, create a new branch for this in Git.

This is a pretty invasive change in the code and there is always a risk that it doesn’t
work as well as you hoped. By making the changes in a new branch, you can
commit every once in a while without messing up the master branch. Making new
branches in Git is quick and easy, so it’s good to get into the habit.

➤ Create a new file using the Swift File template. Name it Search.

➤ Change the contents of Search.swift to:

import Foundation

class Search {
 var searchResults: [SearchResult] = []
 var hasSearched = false
 var isLoading = false

 private var dataTask: URLSessionDataTask? = nil

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 200

 func performSearch(for text: String, category: Int) {
 print("Searching...")
 }
}

You’ve given this class three public properties, one private property, and a method.
This stuff should look familiar because it comes straight from SearchViewController.
You’ll be removing code from that class and putting it into this new Search class.

The performSearch(for:category:) method doesn’t do much yet but that’s OK. First
I want to make SearchViewController work with this new Search object and when
that compiles without errors, you will move all the logic over. Small steps!

Let’s make the changes to SearchViewController.swift. Xcode will probably give
a bunch of errors and warnings while you’re making these changes, but it will all
work out in the end.

➤ In SearchViewController.swift, remove the declarations for the following
instance variables:

var searchResults: [SearchResult] = []
var hasSearched = false
var isLoading = false
var dataTask: URLSessionDataTask?

and replace them with this one:

let search = Search()

The new Search object not only describes the state and results of the search, it also
will have all the logic for talking to the iTunes web service. You can now remove a
lot of code from the view controller.

➤ Cut the following methods and paste them into Search.swift:

• iTunesURL(searchText, category)

• parse(json)

• parse(dictionary)

• parse(track)

• parse(audiobook)

• parse(software)

• parse(ebook)

➤ Make these methods private. They are only important to Search itself, not to any
other classes from the app, so it’s good to “hide” them.

➤ Back in SearchViewController.swift, replace the performSearch() method with
the following (tip: set aside the old code in a temporary file because you’ll need it

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 201

again later).

func performSearch() {
 search.performSearch(for: searchBar.text!,
 category: segmentedControl.selectedSegmentIndex)

 tableView.reloadData()
 searchBar.resignFirstResponder()
}

This simply makes the Search object do all the work. Of course it still reloads the
table view (to show the activity spinner) and hides the keyboard.

There are a few places in the code that still use the old searchResults array even
though that no longer exists. You should change them to use the searchResults
property from the Search object instead. Likewise for hasSearched and isLoading.

➤ For example, change tableView(numberOfRowsInSection) to:

func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 if search.isLoading {
 return 1 // Loading...
 } else if !search.hasSearched {
 return 0 // Not searched yet
 } else if search.searchResults.count == 0 {
 return 1 // Nothing Found
 } else {
 return search.searchResults.count
 }
}

➤ In showLandscape(with), change the line that sets the searchResults property on
the new view controller to:

controller.search = search

This line still gives an error even after you’ve changed it but you’ll fix that soon.

➤ Anywhere else in the code that says isLoading or searchResults, replace that
with search.isLoading and search.searchResults.

The LandscapeViewController still has a property for a searchResults array so you
have to change that to use the Search object as well.

➤ In LandscapeViewController.swift, remove the searchResults instance
variable and replace it with:

var search: Search!

➤ In viewWillLayoutSubviews(), change the call to tileButtons() into:

tileButtons(search.searchResults)

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 202

OK, that’s the first round of changes. Build the app to make sure there are no
compiler errors.

The app itself doesn’t do much anymore because you removed all the searching
logic. So let’s put that back in.

➤ In Search.swift, replace performSearch(for:category:) with the following (use
that temporary file but be careful to make the proper changes):

func performSearch(for text: String, category: Int) {
 if !text.isEmpty {
 dataTask?.cancel()

 isLoading = true
 hasSearched = true
 searchResults = []

 let url = iTunesURL(searchText: text, category: category)

 let session = URLSession.shared
 dataTask = session.dataTask(with: url, completionHandler: {
 data, response, error in

 if let error = error as? NSError, error.code == -999 {
 return // Search was cancelled
 }

 if let httpResponse = response as? HTTPURLResponse,
 httpResponse.statusCode == 200,
 let jsonData = data,
 let jsonDictionary = self.parse(json: jsonData) {

 self.searchResults = self.parse(dictionary: jsonDictionary)
 self.searchResults.sort(by: <)

 print("Success!")
 self.isLoading = false
 return
 }

 print("Failure! \(response)")
 self.hasSearched = false
 self.isLoading = false
 })
 dataTask?.resume()
 }
}

This is basically the same thing you did before, except all the user interface logic
has been removed. The purpose of Search is just to perform a search, it should not
do any UI stuff. That’s the job of the view controller.

➤ Run the app and search for something. When the search finishes, the debug pane
shows a “Success!” message but the table view does not reload and the spinner
keeps spinning in eternity.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 203

The Search object currently has no way to tell the SearchViewController that it is
done. You could solve this by making SearchViewController a delegate of the Search
object, but for situations like these closures are much more convenient.

So let’s create your own closure!

➤ Add the following line to Search.swift, above the class line:

typealias SearchComplete = (Bool) -> Void

The typealias statement allows you to create a more convenient name for a data
type, in order to save some keystrokes and to make the code more readable.

Here you’re declaring a type for your own closure, named SearchComplete. This is a
closure that returns no value (it is Void) and takes one parameter, a Bool. If you
think this syntax is weird, then I’m right there with you, but that’s the way it is.

From now on you can use the name SearchComplete to refer to a closure that takes
one Bool parameter and returns no value.

Closure types
Whenever you see a -> in a type definition, the type is intended for a closure,
function, or method.

Swift treats these three things as mostly interchangeable. Closures, functions, and
methods are all blocks of source code that possibly take parameters and return a
value. The difference is that a function is really just a closure with a name, and a
method is a function that lives inside an object.

Some examples of closure types:

() -> () is a closure that takes no parameters and returns no value.

Void -> Void is the same as the previous example. Void and () mean the same
thing.

(Int) -> Bool is a closure that takes one parameter, an Int, and returns a Bool.

Int -> Bool is this is the same as above. If there is only one parameter, you can
leave out the parentheses.

(Int, String) -> Bool is a closure taking two parameters, an Int and a String,
and returning a Bool.

(Int, String) -> Bool? as above but now returns an optional Bool value.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 204

(Int) -> (Int) -> Int is a closure that returns another closure that returns an Int.
Freaky! Swift treats closures like any other type of object, so you can also pass
them as parameters and return them from functions.

➤ Make the following changes to performSearch(for:category:):

func performSearch(for text: String, category: Int,
 completion: @escaping SearchComplete) { // new
 if !text.isEmpty {
 . . .
 dataTask = session.dataTask(with: url, completionHandler: {
 data, response, error in

 var success = false // new

 if let error = error . . . {
 return // Search was cancelled
 }
 if let httpResponse = response as? . . . {
 . . .
 self.isLoading = false
 success = true // instead of return
 }

 if !success { // new
 self.hasSearched = false
 self.isLoading = false
 }

 DispatchQueue.main.async { // new
 completion(success)
 }
 })
 dataTask?.resume()
 }
}

You’ve added a third parameter named completion that is of type SearchComplete.
Whoever calls performSearch(for, category, completion) can now supply their own
closure, and the method will execute the code that is inside that closure when the
search completes.

Note: The @escaping annotation is necessary for closures that are not used
immediately. It tells Swift that this closure may need to capture variables such
as self and keep them around for a little while until the closure can finally be
executed (when the search is done).

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 205

Instead of returning early from the closure upon success, you now set the success
variable to true (this replaces the return statement). The value of success is used
for the Bool parameter of the completion closure, as you can see inside the call to
DispatchQueue.main.async at the bottom.

To perform the code from the closure, you simply call it as you’d call any function or
method: closureName(parameters). You call completion(true) upon success and
completion(false) upon failure. This is done so that the SearchViewController can
reload its table view or, in the case of an error, show an alert view.

➤ In SearchViewController.swift, replace performSearch() with:

func performSearch() {
 search.performSearch(for: searchBar.text!,
 category: segmentedControl.selectedSegmentIndex,
 completion: { success in
 if !success {
 self.showNetworkError()
 }
 self.tableView.reloadData()
 })

 tableView.reloadData()
 searchBar.resignFirstResponder()
}

You now pass a closure to performSearch(for, category, completion). The code in
this closure gets called after the search completes, with the success parameter
being either true or false. A lot simpler than making a delegate, no? The closure is
always called on the main thread, so it’s safe to use UI code here.

➤ Run the app. You should be able to search again.

That’s the first part of this refactoring complete. You’ve extracted the relevant code
for searching out of the SearchViewController and placed it into its own object,
Search. The view controller now only does view-related things, which is exactly
what it is supposed to do and no more.

➤ You’ve made quite a few extensive changes, so it’s a good idea to commit.

Improving the categories
The idea behind Swift’s strong typing is that the data type of a variable should be
as descriptive as possible. Right now the category to search for is represented by a
number, 0 to 3, but is that the best way to describe a category to your program?

If you see the number 3 does that mean “e-book” to you? It could be anything…
And what if you use 4 or 99 or -1, what would that mean? These are all valid values
for an Int but not for a category. The only reason the category is currently an Int is
because segmentedControl.selectedSegmentIndex is an Int.

There are only four possible search categories, so this sounds like an excellent job

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 206

for an enum.

➤ Add the following to Search.swift, inside the class brackets:

enum Category: Int {
 case all = 0
 case music = 1
 case software = 2
 case ebooks = 3
}

This creates a new enumeration type named Category with four possible items.
Each of these has a numeric value associated with it, called the raw value.

Contrast this with the AnimationStyle enum you made before:

enum AnimationStyle {
 case slide
 case fade
}

This enum does not give numbers to its values (it also doesn’t say “: Int” behind
the enum name). For AnimationStyle it doesn’t matter that slide is really number 0
and fade is number 1, or whatever the values might be. All you care about is that a
variable of type AnimationStyle can either be .slide or .fade – a numeric value is
not important.

For the Category enum, however, you want to connect its four items to the four
possible indices of the Segmented Control. If segment 3 is selected, you want this
to correspond to .ebooks. That’s why the items from the Category enum do have
numbers.

➤ Change the method signature of performSearch(for, category, completion) to
use this new type:

func performSearch(for text: String, category: Category,
 completion: @escaping SearchComplete) {

The category parameter is no longer an Int. It is not possible anymore to pass it
the value 4 or 99 or -1. It must always be one of the values from the Category
enum. This reduces a potential source of bugs and it has made the program more
expressive. Whenever you have a limited list of possible values that can be turned
into an enum, it’s worth doing!

➤ Also change iTunesURL(searchText, category) because that also assumed
category would be an Int:

private func iTunesURL(searchText: String, category: Category) -> URL {
 let entityName: String
 switch category {
 case .all: entityName = ""
 case .music: entityName = "musicTrack"

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 207

 case .software: entityName = "software"
 case .ebooks: entityName = "ebook"
 }

 let escapedSearchText = . . .

The switch now looks at the various cases from the Category enum instead of the
numbers 0 to 3. Note that the default case is no longer needed because this enum
cannot have any other values.

This code works, but to be honest I’m not entirely happy with it. I’ve said before
that any logic that is related to an object should be an integral part of that object –
in other words, an object should do as much as it can itself.

Converting the category into an “entity name” string that goes into the iTunes URL
is a good example – that sounds like something the Category enum itself could do.

Swift enums can have their own methods and properties, so let’s take advantage of
that and improve the code even more.

➤ Add the entityName property to the Category enum:

enum Category: Int {
 case all = 0
 case music = 1
 case software = 2
 case ebooks = 3

 var entityName: String {
 switch self {
 case .all: return ""
 case .music: return "musicTrack"
 case .software: return "software"
 case .ebooks: return "ebook"
 }
 }
}

Swift enums cannot have instance variables, only computed properties. entityName
has the exact same switch statement that you just saw, except that it switches on
self, the current value of the enumeration object.

➤ In iTunesURL(searchText, category) you can now simply write:

private func iTunesURL(searchText: String, category: Category) -> URL {
 let entityName = category.entityName
 let escapedSearchText = . . .

That’s a lot cleaner. Everything that has to do with categories now lives inside its
own enum, Category.

You still need to tell SearchViewController about this, because it needs to convert
the selected segment index into a proper Category value.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 208

➤ In SearchViewController.swift, change the first part of performSearch() to:

func performSearch() {
 if let category = Search.Category(
 rawValue: segmentedControl.selectedSegmentIndex) {
 search.performSearch(for: searchBar.text!, category: category,
 completion: {
 . . .
 })

 tableView.reloadData()
 searchBar.resignFirstResponder()
 }
}

To convert the Int value from selectedSegmentIndex to an item from the Category
enum you use the built-in init(rawValue) method. This may fail, for example when
you pass in a number that isn’t covered by one of Category’s cases, i.e. anything
that is outside the range 0 to 3. That’s why init(rawValue) returns an optional that
needs to be unwrapped with if let before you can use it.

Note: Because you placed the Category enum inside the Search class, its full
name is Search.Category. In other words, Category lives inside the Search
namespace. It makes sense to bundle up these two things because they are so
closely related.

➤ Build and run to see if the different categories still work. Nice!

Enums with associated values
Enums are pretty useful to restrict something to a limited range of possibilities, like
what you did with the search categories. But they are even more powerful than you
might have expected, as you’ll find out in this section…

Like all objects, the Search object has a certain amount of state. For Search this is
determined by its isLoading, hasSearched, and searchResults variables.

These three variables describe four possible states:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 209

The Search object is in only one of these states at a time, and when it changes from
one state to another there is a corresponding change in the app’s UI. For example,
upon a change from “searching” to “have results”, the app hides the activity spinner
and loads the results into the table view.

The problem is that this state is scattered across three different variables. It’s tricky
to see what the current state is just by looking at these variables (you may have to
refer to the above table).

You can do better than that by giving Search an explicit state variable. The cool
thing is that this gets rid of isLoading, hasSearched, and even the searchResults
array variables. Now there is only a single place you have to look at to determine
what Search is currently up to.

➤ In Search.swift, remove the following instance variables:

var searchResults: [SearchResult] = []
var hasSearched = false
var isLoading = false

➤ In their place, add the following enum (this goes inside the class again):

enum State {
 case notSearchedYet
 case loading
 case noResults
 case results([SearchResult])
}

This enumeration has a case for each of the four states listed above. It does not
need raw values so the cases don’t have numbers. (It’s important to note that the
state .notSearchedYet is also used for when there is an error.)

The .results case is special: it has a so-called associated value, which is an array
of SearchResult objects.

This array is only important when the search was successful. In all the other cases,
there are no search results and the array was empty anyway (see the above table).
By making it an associated value, you’ll only have access to this array when Search
is in the .results state. In the other states, the array simply does not exist.

Let’s see how this works.

➤ First add a new instance variable:

private(set) var state: State = .notSearchedYet

This keeps track of Search’s current state. Its initial value is .notSearchedYet –
obviously no search has happened yet when the Search object is first constructed.

This variable is private, but only half. It’s not unreasonable for other objects to

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 210

want to ask Search what its current state is. In fact, the app won’t work unless you
allow this.

But you don’t want those other objects to be able to change the value of state;
they are only allowed to read the state value. With private(set) you tell Swift that
reading is OK for other objects, but assigning new values to this variable may only
happen inside the Search class.

➤ Change performSearch(for, category, completion) to use this new state
variable:

func performSearch(for text: String, category: Category,
 completion: @escaping SearchComplete) {
 if !text.isEmpty {
 dataTask?.cancel()

 state = .loading // add this

 let url = iTunesURL(searchText: text, category: category)

 let session = URLSession.shared
 dataTask = session.dataTask(with: url, completionHandler: {
 data, response, error in

 self.state = .notSearchedYet // add this
 var success = false

 if let error = error as? NSError, error.code == -999 {
 return // Search was cancelled
 }

 if let httpResponse = response as? HTTPURLResponse,
 httpResponse.statusCode == 200,
 let jsonData = data,
 let jsonDictionary = self.parse(json: jsonData) {

 // change this entire section
 var searchResults = self.parse(dictionary: jsonDictionary)
 if searchResults.isEmpty {
 self.state = .noResults
 } else {
 searchResults.sort(by: <)
 self.state = .results(searchResults)
 }
 success = true
 }

 DispatchQueue.main.async {
 completion(success)
 }
 })
 dataTask?.resume()
 }
}

Instead of the old variables isLoading, hasSearched, and searchResults, this now

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 211

only changes state.

There is a lot that can go wrong between performing the network request and
parsing the JSON. By setting self.state to .notSearchedYet (which doubles as the
error state) and success to false at the start of the completion handler you assume
the worst – always a good idea when doing network programming – unless there is
evidence otherwise.

That evidence comes when the app was able to successfully parse the JSON and
create an array of SearchResult objects. If the array is empty, state
becomes .noResults.

The interesting thing happens when the array is not empty. After sorting it like
before, you do self.state = .results(searchResults). This gives state the
value .results and also associates the array of SearchResult objects with it.

You no longer need a separate instance variable to keep track of the array; the
array object is intrinsically attached to the value of state.

That completes the changes in Search.swift, but there are quite a few other places
in the code that still try to use Search’s old instance variables.

➤ In SearchViewController.swift, change tableView(numberOfRowsInSection) to:

func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 switch search.state {
 case .notSearchedYet:
 return 0
 case .loading:
 return 1
 case .noResults:
 return 1
 case .results(let list):
 return list.count
 }
}

This is pretty straightforward. Instead of trying to make sense out of the separate
isLoading, hasSearched, and searchResults variables, this simply looks at the value
from search.state. The switch statement is ideal for situations like this.

The .results case requires more explanation. Because .results has an array of
SearchResult objects associated with it, you can bind this array to a temporary
variable, list, and then use that variable inside the case to read how many items
are in the array. That’s how you make use of the associated value.

This pattern, using a switch statement to look at state, is going to become very
common in your code.

➤ Change tableView(cellForRowAt) to the following:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 212

func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 switch search.state {
 case .notSearchedYet:
 fatalError("Should never get here")

 case .loading:
 let cell = tableView.dequeueReusableCell(
 withIdentifier: TableViewCellIdentifiers.loadingCell,
 for: indexPath)

 let spinner = cell.viewWithTag(100) as! UIActivityIndicatorView
 spinner.startAnimating()
 return cell

 case .noResults:
 return tableView.dequeueReusableCell(
 withIdentifier: TableViewCellIdentifiers.nothingFoundCell,
 for: indexPath)

 case .results(let list):
 let cell = tableView.dequeueReusableCell(
 withIdentifier: TableViewCellIdentifiers.searchResultCell,
 for: indexPath) as! SearchResultCell

 let searchResult = list[indexPath.row]
 cell.configure(for: searchResult)
 return cell
 }
}

The same thing happened here. The various if statements have been replaced by a
switch and case statements for the four possibilities.

Note that “numberOfRowsInSection” returns 0 for .notSearchedYet and no cells will
ever be asked for. But because a switch must always be exhaustive, you also have
to include a case for .notSearchedYet in “cellForRowAt”. Considering that it’s a bug
when the code gets there you can use the built-in fatalError() function to help
catch such mistakes.

➤ Next up is tableView(willSelectRowAt):

func tableView(_ tableView: UITableView,
 willSelectRowAt indexPath: IndexPath) -> IndexPath? {
 switch search.state {
 case .notSearchedYet, .loading, .noResults:
 return nil
 case .results:
 return indexPath
 }
}

It’s only possible to tap on rows when the state is .results, so in all other cases
this method returns nil. (You don’t need to bind the results array because you’re
not using it for anything.)

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 213

➤ And finally, prepare(for:sender:). Change it to:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "ShowDetail" {
 if case .results(let list) = search.state {
 let detailViewController = segue.destination
 as! DetailViewController
 let indexPath = sender as! IndexPath
 let searchResult = list[indexPath.row]
 detailViewController.searchResult = searchResult
 }
 }
}

Here you only care about the .results case, so writing an entire switch statement
is a bit much. For situations like this, you can use the special if case statement to
look at a single case.

There is one more change to make, in LandscapeViewController.swift.

➤ Change the if firstTime section in viewWillLayoutSubviews() to:

if firstTime {
 firstTime = false

 switch search.state {
 case .notSearchedYet:
 break
 case .loading:
 break
 case .noResults:
 break
 case .results(let list):
 tileButtons(list)
 }
}

This uses the same pattern as before. If the state is .results, it binds the array of
SearchResult objects to the temporary constant list and passes it along to
tileButtons(). Soon you’ll add additional code to the other cases. Because these
cases are currently empty, they must contain a break statement.

➤ Build and run to see if the app still works. (It should!)

I think enums with associated values are one of the most exciting features of Swift.
Here you used them to simplify the way the Search state is expressed. No doubt
you’ll find many other great uses for them in your own apps!

➤ This is a good time to commit your changes.

Spin me right round
If you flip to landscape while the search is still taking place, the app really ought to
show an animated spinner to let the user know something is happening.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 214

You’re already checking in viewWillLayoutSubviews() what the state of the active
Search object is, so that’s an easy fix.

➤ In LandscapeViewController.swift, in viewWillLayoutSubviews() change
the .loading case in the switch statement to:

case .loading:
 showSpinner()

If the Search object is in the .loading state, you need to show the activity spinner.

➤ Also add the new showSpinner() method:

private func showSpinner() {
 let spinner = UIActivityIndicatorView(
 activityIndicatorStyle: .whiteLarge)
 spinner.center = CGPoint(x: scrollView.bounds.midX + 0.5,
 y: scrollView.bounds.midY + 0.5)
 spinner.tag = 1000
 view.addSubview(spinner)
 spinner.startAnimating()
}

This programmatically creates a new UIActivityIndicatorView object (a big white
one this time), puts it in the center of the screen, and starts animating it.

You give the spinner the tag 1000, so you can easily remove it from the screen
once the search is done.

➤ Run the app. After starting a search, quickly flip the phone to landscape. You
should now see a spinner:

A spinner indicates a search is still taking place

Note: You added 0.5 to the spinner’s center position. This kind of spinner is
37 points wide and high, which is not an even number. If you were to place the
center of this view at the exact center of the screen at (284, 160) then it
would extend 18.5 points to either end. The top-left corner of that spinner is at
coordinates (265.5, 141.5), making it look all blurry.

It’s best to avoid placing objects at fractional coordinates. By adding 0.5 to
both the X and Y position, the spinner is placed at (266, 142) and everything
looks sharp. Pay attention to this when working with the center property and
objects that have odd widths or heights.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 215

This is all great, but the spinner doesn’t disappear when the actual search results
are received. The app never notifies the LandscapeViewController of this.

There is a variety of ways you can choose to tell the LandscapeViewController that
the search results have come in, but let’s keep it simple.

➤ In LandscapeViewController.swift, add these two new methods:

func searchResultsReceived() {
 hideSpinner()

 switch search.state {
 case .notSearchedYet, .loading, .noResults:
 break
 case .results(let list):
 tileButtons(list)
 }
}

private func hideSpinner() {
 view.viewWithTag(1000)?.removeFromSuperview()
}

The private hideSpinner() method looks for the view with tag 1000 – the activity
spinner – and then tells that view to remove itself from the screen.

You could have kept a reference to the spinner in an instance variable but for a
simple situation such as this you might as well use a tag.

Because no one else has any strong references to the UIActivityIndicatorView, this
instance will be deallocated. Note that you have to use optional chaining because
viewWithTag() can potentially return nil.

The searchResultsReceived() method should be called from somewhere, of course,
and that somewhere is the SearchViewController.

➤ In SearchViewController.swift’s performSearch() method, add the following
line into the closure (below self.tableView.reloadData()):

self.landscapeViewController?.searchResultsReceived()

The sequence of events here is quite interesting. When the search begins there is
no LandscapeViewController object yet because the only way to start a search is
from portrait mode.

But by the time the closure is invoked, the device may have rotated and if that
happened self.landscapeViewController will contain a valid reference.

Upon rotation you also gave the new LandscapeViewController a reference to the
active Search object. Now you just have to tell it that search results are available so
it can create the buttons and fill them up with images.

Of course, if you’re still in portrait mode by the time the search completes then

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 216

self.landscapeViewController is nil and the call to searchResultsReceived() will
simply be ignored due to the optional chaining. (You could have used if let here to
unwrap the value of self.landscapeViewController, but optional chaining has the
same effect and is shorter to write.)

➤ Try it out. That works pretty well, eh?

Exercise. Verify that network errors are also handled correctly when the app is in
landscape orientation. Find a way to create – or fake! – a network error and see
what happens in landscape mode. Hint: the sleep(5) function will put your app to
sleep for 5 seconds. Put that in the completion handler to give yourself some time
to flip the device around.

Speaking of spinners, you’ve probably noticed that your iPhone’s status bar shows a
small, animated spinner when network activity is taking place. This isn’t automatic
– the app needs to explicitly turn this animation on or off. Fortunately, it’s only a
single line of code.

➤ In Search.swift, first import UIKit (all the way at the top of the file):

import UIKit

➤ Add the following line to performSearch(for, category, completion), just before
starting the search:

func performSearch(for text: String, category: Category,
 completion: @escaping SearchComplete) {
 if !text.isEmpty {
 dataTask?.cancel()
 UIApplication.shared.isNetworkActivityIndicatorVisible = true
 . . .

This makes the animated spinner visible in the app’s status bar. To turn it off again,
change the code in DispatchQueue.main.async to the following:

DispatchQueue.main.async {
 UIApplication.shared.isNetworkActivityIndicatorVisible = false
 completion(success)
}

➤ Try it out. The app now also shows a spinning animation in the status bar while
the search is taking place:

The network activity indicator

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 217

Nothing found
You’re not done yet. If there are no matches found, you should also tell the user
about this if they’re in landscape mode.

➤ Inside the switch statement in viewWillLayoutSubviews(), change the case
for .noResults to the following:

case .noResults:
 showNothingFoundLabel()

If there are no search results, you’ll call the new showNothingFoundLabel() method.

➤ Here is that method:

private func showNothingFoundLabel() {
 let label = UILabel(frame: CGRect.zero)
 label.text = "Nothing Found"
 label.textColor = UIColor.white
 label.backgroundColor = UIColor.clear

 label.sizeToFit()

 var rect = label.frame
 rect.size.width = ceil(rect.size.width/2) * 2 // make even
 rect.size.height = ceil(rect.size.height/2) * 2 // make even
 label.frame = rect

 label.center = CGPoint(x: scrollView.bounds.midX,
 y: scrollView.bounds.midY)
 view.addSubview(label)
}

Here you first create a UILabel object and give it text and a color. To make the label
see-through the backgroundColor property is set to UIColor.clear.

The call to sizeToFit() tells the label to resize itself to the optimal size. You could
have given the label a frame that was big enough to begin with, but I find this just
as easy. (It also helps when you’re translating the app to a different language, in
which case you may not know beforehand how large the label needs to be.)

The only trouble is that you want to center the label in the view and as you saw
before that gets tricky when the width or height are odd (something you don’t
necessarily know in advance). So here you use a little trick to always force the
dimensions of the label to be even numbers:

width = ceil(width/2) * 2

If you divide a number such as 11 by 2 you get 5.5. The ceil() function rounds up
5.5 to make 6, and then you multiply by 2 to get a final value of 12. This formula
always gives you the next even number if the original is odd. (You only need to do
this because these values have type CGFloat. If they were integers, you wouldn’t

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 218

have to worry about fractional parts.)

Note: Because you’re not using a hardcoded number such as 480 or 568 but
scrollView.bounds to determine the width of the screen, the code to center the
label works correctly on all iPhone models.

➤ Run the app and search for something ridiculous (ewdasuq3sadf843 will do).
When the search is done, flip to landscape.

Yup, nothing found here either

It doesn’t work properly yet when you flip to landscape while the search is taking
place. Of course you also need to put some logic in searchResultsReceived().

➤ Change the switch statement in that method to:

switch search.state {
case .notSearchedYet, .loading:
 break
case .noResults:
 showNothingFoundLabel()
case .results(let list):
 tileButtons(list)
}

Now you should have all your bases covered.

The Detail pop-up
These landscape search results are not buttons for nothing. The app should show
the Detail pop-up when you tap them, like this:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 219

The pop-up in landscape mode

This is fairly easy to achieve. When adding the buttons you can give them a target-
action, i.e. a method to call when the Touch Up Inside event is received. Just like
in Interface Builder, except now you hook up the event to the action method
programmatically.

➤ Add the following two lines to the button creation code in tileButtons():

button.tag = 2000 + index
button.addTarget(self, action: #selector(buttonPressed),
 for: .touchUpInside)

First you give the button a tag, so you know to which index in the .results array
this button corresponds. That’s needed in order to pass the correct SearchResult
object to the Detail pop-up.

Tip: You added 2000 to the index because tag 0 is used on all views by default so
asking for a view with tag 0 might actually return a view that you didn’t expect. To
avoid this kind of confusion, you simply start counting from 2000.

You also tell the button it should call a method named buttonPressed() when it gets
tapped.

➤ Add this new buttonPressed() method:

func buttonPressed(_ sender: UIButton) {
 performSegue(withIdentifier: "ShowDetail", sender: sender)
}

Even though this is an action method you didn’t declare it as @IBAction. That is only
necessary when you want to connect the method to something in Interface Builder.
Here you made the connection programmatically, so you can skip the @IBAction
annotation.

Pressing the button triggers a segue, which means you need a prepare-for-segue to
do all the work:

➤ Add the prepare(for, sender) method:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "ShowDetail" {

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 220

 if case .results(let list) = search.state {
 let detailViewController = segue.destination
 as! DetailViewController
 let searchResult = list[(sender as! UIButton).tag - 2000]
 detailViewController.searchResult = searchResult
 }
 }
}

This is almost word-for-word identical to prepare(for:sender:) from
SearchViewController, except now you don’t get the index of the SearchResult
object from an index-path but from the button’s tag (minus 2000).

Of course, none of this will work unless you actually make a segue in the
storyboard first.

➤ Go to the Landscape View Controller in the storyboard and Ctrl-drag to the Detail
View Controller. Make it a Present Modally segue with identifier ShowDetail.

The storyboard looks like this now:

The storyboard after connecting the Landscape view to the Detail pop-up

➤ Run the app and check it out.

Cool. But what happens when you rotate back to portrait with a Detail pop-up
showing? Unfortunately, it sticks around. You still need to tell the Detail screen to
close.

➤ In SearchViewController.swift, in hideLandscape(with), add the following lines
to the animate(alongsideTransition) animation closure:

if self.presentedViewController != nil {
 self.dismiss(animated: true, completion: nil)
}

In the debug pane output you should see that the DetailViewController is properly
deallocated when you rotate back to portrait.

➤ If you’re happy with the way it works, then let’s commit it. If you also made a

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 221

branch, then merge it back into the master branch.

You can find the project files for the app under 08 - Refactored Search in the
tutorial’s Source Code folder.

Internationalization
So far the apps you’ve made in this tutorial series have all been in English. No
doubt the United States is the single biggest market for apps, followed closely by
Asia. But even if you add up all the smaller countries where English isn’t the
primary language, you still end up with quite a sizable market that you might be
missing out on.

Fortunately, iOS makes it very easy to add support for other languages to your
apps, a process known as internationalization. This is often abbreviated as “i18n”
because that’s a lot shorter to write; the 18 stands for the number of letters
between the i and the n. You’ll also often hear the word localization, which
basically means the same thing.

In this section you’ll add support for Dutch, which is my native language. You’ll also
make the web service query return results that are optimized for the user’s regional
settings.

The structure of your source code folder probably looks something like this:

The files in the source code folder

There is a subfolder named Base.lproj that contains one file, Main.storyboard.
The Base.lproj folder is for files that can be localized. So far that’s only the
storyboard but you’ll add more files to this folder soon.

When you add support for another language, a new XX.lproj folder is created with
XX being the two-letter code for that new language (en for English, nl for Dutch).

Let’s begin by localizing a simple file, the NothingFoundCell.xib. Often nib files
contain text that needs to be translated. You can simply make a new copy of the
existing nib file for a specific language and put it in the right .lproj folder. When the
iPhone is using that language, it will automatically load the translated nib.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 222

➤ Select NothingFoundCell.xib in the Project navigator. Switch to the File
inspector pane (on the right of the Xcode window).

Because the NothingFoundCell.xib file isn’t in any XX.lproj folders, it does not have
any localizations yet.

The NothingFoundCell has no localizations

➤ Click the Localize… button in the Localization section.

Xcode asks for confirmation because this involves moving the file to a new folder:

Xcode asks whether it’s OK to move the file

➤ Choose English (not Base) and click Localize to continue.

Look in Finder and you will see there is a new en.lproj folder (for English) and
NothingFoundCell.xib has moved into that folder:

Xcode moved NothingFoundCell.xib to the en.lproj folder

The File inspector for NothingFoundCell.xib now lists English as one of the
localizations.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 223

The Localization section now contains an entry for English

To add a new language you have to switch to the Project Settings screen.

➤ Click on StoreSearch at the top of the Project navigator to open the settings
page.

The Project Settings

➤ From the sidebar, choose StoreSearch under PROJECT (not under TARGETS). If
the sidebar isn’t visible click the small icon at the top to open it.

➤ In the Info tab, under the Localizations section press the + button:

Adding a new language

➤ From the pop-up menu choose Dutch (nl).

Xcode now asks which resources you want to localize. Uncheck everything except
for NothingFoundCell.xib and click Finish.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 224

Choosing the files to localize

If you look in Finder again you’ll notice that a new subfolder has been added,
nl.lproj, and that it contains another copy of NothingFoundCell.xib.

That means there are now two nib files for NothingFoundCell. You can also see this
in the Project navigator:

NothingFoundCell.xib has two localizations

Let’s edit the new Dutch version of this nib.

➤ Click on NothingFoundCell.xib (Dutch) to open it in Interface Builder.

➤ Change the label text to Niets gevonden and center the label again in the view
(if necessary, use the Resolve Auto Layout Issues menu).

That’s how you say it in Dutch

It is perfectly all right to resize or move around items in a translated nib. You could
make the whole nib look completely different if you wanted to (but that’s probably a
bad idea). Some languages, such as German, have very long words and in those
cases you may have to tweak label sizes and fonts to get everything to fit.

If you run the app now, nothing will have changed. You have to switch the
Simulator to use the Dutch language first. However, before you do that you really
should remove the app from the simulator, clean the project, and do a fresh build.

The reason for this is that the nibs were previously not localized. If you were to
switch the simulator’s language now, the app would still keep using the old, non-

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 225

localized versions of the nibs.

Note: For this reason it’s a good idea to already put all your nib files and
storyboards in the en.lproj folder when you create them (or in Base.lproj,
which we’ll discuss shortly). Even if you don’t intend to internationalize your
app any time soon, you don’t want your users to run into the same problem
later on. It’s not nice to ask your users to uninstall the app – and lose their
data – in order to be able to switch languages.

➤ Remove the app from the Simulator. Do a clean (Product → Clean or Shift-⌘-
K) and re-build the app.

➤ Open the Settings app in the Simulator and go to General → Language &
Region → iPhone Language. From the list pick Nederlands (Dutch).

Switching languages in the Simulator

The Simulator will take a moment to switch between languages. This terminates the
app if it was still running.

➤ Search for some nonsense text and the app will now respond in Dutch:

I’d be surprised if that did turn up a match

Pretty cool. Just by placing some files in the en.lproj and nl.lproj folders, you

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 226

have internationalized the app. You’re going to keep the Simulator in Dutch for a
while because the other nibs need translating too.

Note: If the app crashes for you at this point, then the following might help.
Quit Xcode. Reset the Simulator and then quit it. In Finder go to your Library
folder, Developer, Xcode and throw away the entire DerivedData folder.
Empty your trashcan. Then open the StoreSearch project again and give it
another try. (Don’t forget to switch the Simulator back to Nederlands.)

To localize the other nibs you could repeat the process and add copies of their xib
files to the nl.lproj folder. That isn’t too bad for this app but if you have an app
with really complicated screens then having multiple copies of the same nib can
become a maintenance nightmare.

Whenever you need to change something to that screen you need to update all of
those nibs. There’s a risk that you forget one nib and they go out-of-sync. That’s
just asking for bugs – in languages that you probably don’t speak!

To prevent this from happening you can use base internationalization. With this
feature enabled you don’t copy the entire nib, but only the text strings. This is what
the Base.lproj folder is for.

Let’s translate the other nibs.

➤ Open LoadingCell.xib in Interface Builder. In the File inspector press the
Localize… button. This time use Base as the language:

Choosing the Base localization as the destination

Verify with Finder that LoadingCell.xib got moved into the Base.lproj folder.

➤ The Localization section in the File inspector for LoadingCell.xib now contains
three options: Base (with a checkmark), English, and Dutch. Put a checkmark in
front of Dutch:

Adding a Dutch localization

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 227

In Finder you can see that nl.proj doesn’t get a copy of the nib, but a new type of
file: LoadingCell.strings.

➤ Click the arrow in front of LoadingCell.xib to expand it in the Project navigator
and open the LoadingCell.strings (Dutch) file.

You should see something like the following:

The Dutch localization is a strings file

There is still only one nib, the one from the Base localization. The Dutch translation
consists of a “strings” file with just the texts from the labels, buttons, and other
controls.

The contents of this particular strings file are:

/* Class = "UILabel"; text = "Loading..."; ObjectID = "9y5-pI-mmH"; */
"9y5-pI-mmH.text" = "Loading...";

The green bit is a comment, just like in Swift. The second line says that the text
property of the object with ID “9y5-pI-mmH” contains the text Loading…

The ID is an internal identifier that Xcode uses to keep track of the objects in your
nibs; your own nib probably has a different code than mine. You can see this ID in
the Identity inspector for the label.

➤ Change the text Loading… into Zoeken…

Tip: You can use the Assistant editor in Interface Builder to get a preview of your
localized nib. Go to LoadingCell.xib (Base) and open the Assistant editor. From
the Jump bar at the top, choose Preview. In the bottom-right corner it says
English. Click this to switch to a Dutch preview.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 228

The Assistant editor shows a preview of the translation

If you open a second assistant pane (with the +) and set that to Localizations,
you can edit the translations and see what they look like at the same time. Very
handy!

➤ Do a Product → Clean and run the app again.

The localized loading text

Note: If you don’t see the “Zoeken…” text then do the same dance again: quit
Xcode, throw away the DerivedData folder, reset the Simulator.

➤ Repeat the steps to add a Dutch localization for Main.storyboard. It already has
a Base localization so you simply have to put a check in front of Dutch in the File
inspector.

For the Search View Controller screen two things need to change: the placeholder
text in the Search Bar and the labels on the Segmented Control.

➤ In Main.strings (Dutch) change the placeholder text to Naam van artiest,
nummer, album.

"68e-CH-NSs.placeholder" = "Naam van artiest, nummer, album";

The segment labels will become: Alles, Muziek, Software, and E-boeken.

"Sjk-fv-Pca.segmentTitles[0]" = "Alles";

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 229

"Sjk-fv-Pca.segmentTitles[1]" = "Muziek";
"Sjk-fv-Pca.segmentTitles[2]" = "Software";
"Sjk-fv-Pca.segmentTitles[3]" = "E-boeken";

(Of course your object IDs will be different.)

The localized SearchViewController

➤ For the Detail pop-up you only need to change the Type: label to say Soort:

"DCQ-US-EVg.text" = "Soort:";

You don’t need to change these:

"ZYp-Zw-Fg6.text" = "Genre:";
"yz2-Gh-kzt.text" = "Kind Value";
"Ph9-wm-1LS.text" = "Artist Name";
"JVj-dj-Iz8.text" = "Name";
"7sM-UJ-kWH.text" = "Genre Value";
"xOH-GC-bHs.normalTitle" = "$9.99";

These labels can remain the same because you will replace them with values from
the SearchResult object anyway. (“Genre” is the same in both languages.)

Note: If you wanted to, you could even remove the texts that don’t need
localization from the strings file. If a localized version for a specific resource is
missing for the user’s language, iOS will fall back to the one from the Base
localization.

The pop-up in Dutch

Thanks to Auto Layout, the labels automatically resize to fit the translated text. A

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 230

common issue with localization is that English words tend to be shorter than words
in other languages so you have to make sure your labels are big enough. With Auto
Layout that is a piece of cake.

The Landscape View Controller doesn’t have any text to translate.

➤ There is no need to give SearchResultCell.xib a Dutch localization (there is no
on-screen text in the nib itself) but do give it a Base localization. This prepares the
app for the future, should you need to localize this nib at some point.

When you’re done there should be no more xib files outside the .lproj folders.

That’s it for the nibs and the storyboard. Not so bad, was it? I’d say all these
changes are commit-worthy.

Tip: You can also test localizations by changing the settings for the active scheme.
Click on StoreSearch in the Xcode toolbar (next to the Simulator name) and
choose Edit Scheme.

In the Options tab you can change the Application Language and Region
settings. That’s a bit quicker than restarting the Simulator.

Localizing on-screen texts
Even though the nibs and storyboard have been translated, not all of the text is. For
example, in the image above the text from the kind property is still “Song”.

While in this case you could get away with it – probably everyone in the world
knows what the word “Song” means – not all of the texts from the
kindForDisplay() method will be understood by non-English speaking users.

To localize texts that are not in a nib or storyboard, you have to use another
approach.

➤ In SearchResult.swift, make sure the Foundation framework is imported:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 231

import Foundation

➤ Then replace the kindForDisplay() method with:

func kindForDisplay() -> String {
 switch kind {
 case "album":
 return NSLocalizedString("Album", comment: "Localized kind: Album")
 case "audiobook":
 return NSLocalizedString("Audio Book",
 comment: "Localized kind: Audio Book")
 case "book":
 return NSLocalizedString("Book", comment: "Localized kind: Book")
 case "ebook":
 return NSLocalizedString("E-Book",
 comment: "Localized kind: E-Book")
 case "feature-movie":
 return NSLocalizedString("Movie",
 comment: "Localized kind: Feature Movie")
 case "music-video":
 return NSLocalizedString("Music Video",
 comment: "Localized kind: Music Video")
 case "podcast":
 return NSLocalizedString("Podcast",
 comment: "Localized kind: Podcast")
 case "software":
 return NSLocalizedString("App", comment: "Localized kind: Software")
 case "song":
 return NSLocalizedString("Song", comment: "Localized kind: Song")
 case "tv-episode":
 return NSLocalizedString("TV Episode",
 comment: "Localized kind: TV Episode")
 default:
 return kind
 }
}

Tip: Rather than typing in the above you can use Xcode’s powerful Regular
Expression Replace feature to make those changes in just a few seconds.

Go to the Search inspector and change its mode from Find to Replace >
Regular Expression.

In the search box type: return "(.+)"

In the replacement box type:

return NSLocalizedString("$1", comment: "Localized kind: $1")

Press enter to search. This looks for any lines that match the pattern return
"something". Whatever that something is will be put in the $1 placeholder of
the replacement text.

Click Preview. Make sure only SearchResult.swift is selected – you don’t
want to make this change in any of the other files! Click Replace to finish.

Thanks to Scott Gardner for the tip!

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 232

The structure of kindForDisplay() is still the same as before, but instead of doing,

return "Album"

it now does:

return NSLocalizedString("Album", comment: "Localized kind: Album")

Slightly more complicated but also a lot more flexible.

NSLocalizedString() takes two parameters: the text to return, "Album", and a
comment, "Localized kind: Album".

Here is the cool thing: if your app includes a file named Localizable.strings for the
user’s language, then NSLocalizedString() will look up the text ("Album") and
returns the translation as specified in Localizable.strings.

If no translation for that text is present, or there is no Localizable.strings file, then
NSLocalizedString() simply returns the text as-is.

➤ Run the app again. The “Type:” field in the pop-up (or “Soort:” in Dutch) should
still show the same kind of texts as before because you haven’t translated anything
yet.

To create the Localizable.strings file, you will use a command line tool named
genstrings. This requires a trip to the Terminal.

➤ Open a Terminal, cd to the folder that contains the StoreSearch project. You want
to go into the folder that contains the actual source files. On my system that is:

cd ~/Desktop/StoreSearch/StoreSearch

Then type the following command:

genstrings *.swift -o en.lproj

This looks at all your source files (*.swift) and writes a new file called
Localizable.strings in the en.lproj folder.

➤ Add this Localizable.strings file from the en.lproj folder to the project in
Xcode. (To be safe, disable Copy items if needed. You want to add the file from
en.lproj, not make a copy.)

If you open the Localizable.strings file, this is what it currently contains:

/* Localized kind: Album */
"Album" = "Album";

/* Localized kind: Software */
"App" = "App";

/* Localized kind: Audio Book */

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 233

"Audio Book" = "Audio Book";

/* Localized kind: Book */
"Book" = "Book";

/* Localized kind: E-Book */
"E-Book" = "E-Book";

/* Localized kind: Feature Movie */
"Movie" = "Movie";

/* Localized kind: Music Video */
"Music Video" = "Music Video";

/* Localized kind: Podcast */
"Podcast" = "Podcast";

/* Localized kind: Song */
"Song" = "Song";

/* Localized kind: TV Episode */
"TV Episode" = "TV Episode";

The things between the /* and */ symbols are the comments you specified as the
second parameter of NSLocalizedString(). They give the translator some context
about where the string is supposed to be used in the app.

Tip: It’s a good idea to make these comments as detailed as you can. In the
words of fellow tutorial author Scott Gardner:

“The comment to the translator should be as detailed as necessary to not only
state the words to be transcribed, but also the perspective, intention, gender
frame of reference, etc. Many languages have different words based on these
considerations. I translated an app into Chinese Simplified once and it took
multiple passes to get it right because my original comments were not detailed
enough.”

➤ Change the “Song” line to:

"Song" = "SUPER HIT!";

➤ Now run the app again and search for music. For any search result that is a song,
it will now say “SUPER HIT!” instead.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 234

Where it used to say Song it now says SUPER HIT!

Of course, changing the texts in the English localization doesn’t make much sense,
so put Song back to what it was and then we’ll do it properly.

➤ In the File inspector, add a Dutch localization for this file. This creates a copy of
Localizable.strings in the nl.lproj folder.

➤ Change the translations in the Dutch version of Localizable.strings to:

"Album" = "Album";
"App" = "App";
"Audio Book" = "Audioboek";
"Book" = "Boek";
"E-Book" = "E-Boek";
"Movie" = "Film";
"Music Video" = "Videoclip";
"Podcast" = "Podcast";
"Song" = "Liedje";
"TV Episode" = "TV serie";

If you run the app again, the product types will all be in Dutch. Nice!

Always use NSLocalizedString() from the beginning

There are a bunch of other strings in the app that need translation as well. You
can search for anything that begins with " but it would have been a lot easier
if we had used NSLocalizedString() from the start. Then all you would’ve had
to do was run the genstrings tool and you’d get all the strings.

Now you have to comb through the source code and add NSLocalizedString()
everywhere there is text that will be shown to the user. (Mea culpa!)

You should really get into the habit of always using NSLocalizedString() for
strings that you want to display to the user, even if you don’t care about
internationalization right away.

Adding support for other languages is a great way for your apps to become
more popular, and going back through your code to add NSLocalizedString()
is not much fun. It’s better to do it right from the start!

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 235

Here are the other strings I found that need to be NSLocalizedString-ified:

// DetailViewController, updateUI()
artistNameLabel.text = "Unknown"
priceText = "Free"

// SearchResultCell, configure(for)
artistNameLabel.text = "Unknown"

// LandscapeViewController, showNothingFoundLabel()
label.text = "Nothing Found"

// SearchViewController, showNetworkError()
title: "Whoops...",
message: "There was an error reading from the iTunes Store.
 Please try again.",
title: "OK"

➤ Add NSLocalizedString() around these texts. Don’t forget to use descriptive
comments!

For example, when instantiating the UIAlertController in showNetworkError(), you
could write:

let alert = UIAlertController(
 title: NSLocalizedString("Whoops...", comment: "Error alert: title"),
 message: NSLocalizedString(
 "There was an error reading from the iTunes Store. Please try again.",
 comment: "Error alert: message"),
 preferredStyle: .alert)

Note: You don’t need to use NSLocalizedString() with your print()’s. Debug output
is really intended only for you, the developer, so it’s best if it is in English (or your
native language).

➤ Run the genstrings tool again. Give it the same arguments as before. It will put
a clean file with all the new strings in the en.lproj folder.

Unfortunately, there really isn’t a good way to make genstrings merge new strings
into existing translations. It will overwrite your entire file and throw away any
changes that you made. There is a way to make the tool append its output to an
existing file but then you end up with a lot of duplicate strings.

Tip: Always regenerate only the file in en.lproj and then copy over the missing
strings to your other Localizable.strings files. You can use a tool such as
FileMerge or Kaleidoscope to compare the two to see where the new strings
are. There are also several third-party tools on the Mac App Store that are a
bit friendlier to use than genstrings.

➤ Add these new translations to the Dutch Localizable.strings:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 236

"Nothing Found" = "Niets gevonden";

"There was an error reading from the iTunes Store. Please try again." =
"Er ging iets fout bij het communiceren met de iTunes winkel. Probeer het
nog eens.";

"Unknown" = "Onbekend";

"Whoops..." = "Foutje...";

It may seem a little odd that such as long string as “There was an error reading
from the iTunes Store. Please try again.” would be used as the lookup key for a
translated string, but there really isn’t anything wrong with it.

(By the way, the semicolons at the end of each line are not optional. If you forget a
semicolon, the Localizable.strings file cannot be compiled and the build will fail.)

Some people write code like this:

let s = NSLocalizedString("ERROR_MESSAGE23",
 comment: "Error message on screen X")

The Localizable.strings file would then look like:

/* Error message on screen X */
"ERROR_MESSAGE23" = "Does not compute!";

This works but I find it harder to read. It requires that you always have an English
Localizable.strings as well. In any case, you will see both styles used in practice.

Note also that the text "Unknown" occurred only once in Localizable.strings even
though it shows up in two different places in the source code. Each piece of text
only needs to be translated once.

If your app builds strings dynamically, then you can also localize such texts. For
example in SearchResultCell.swift, configure(for) you do:

artistNameLabel.text = String(format: "%@ (%@)",
 searchResult.artistName, searchResult.kindForDisplay())

➤ Internationalize this as follows:

artistNameLabel.text = String(format:
 NSLocalizedString("%@ (%@)", comment: "Format for artist name label"),
 searchResult.artistName, searchResult.kindForDisplay())

After running genstrings again, this shows up in Localizable.strings as:

/* Format for artist name label */
"%@ (%@)" = "%1$@ (%2$@)";

If you wanted to, you could change the order of these parameters in the translated

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 237

file. For example:

"%@ (%@)" = "%2$@ van %1$@";

It will turn the artist name label into something like this:

The “kind” now comes first, the artist name last

In this circumstance I would advocate the use of a special key rather than the literal
string to find the translation. It’s thinkable that your app will employ the format
string "%@ (%@)" in some other place and you may want to translate that completely
differently there.

I’d call it something like "ARTIST_NAME_LABEL_FORMAT" instead (this goes in the Dutch
Localizable.strings):

/* Format for artist name label */
"ARTIST_NAME_LABEL_FORMAT" = "%2$@ van %1$@";

You also need to add this key to the English version of Localizable.strings:

/* Format for artist name label */
"ARTIST_NAME_LABEL_FORMAT" = "%1$@ (%2$@)";

Don’t forget to change the code as well:

artistNameLabel.text = String(format:
 NSLocalizedString("ARTIST_NAME_LABEL_FORMAT",
 comment: "Format for artist name label"),
 searchResult.artistName, searchResult.kindForDisplay())

There is one more thing I’d like to improve. Remember how in SearchResult.swift
the kindForDisplay() method is this enormous switch statement? That’s “smelly” to
me. The problem is that any new products require you to add need another case to
the switch.

For situations like these it’s better to use a data-driven approach. Here that means
you place the product types and their human-readable names in a data structure, a
dictionary, rather than a code structure.

➤ Add the following dictionary to SearchResult.swift, above the class (you may
want to copy-paste this from kindForDisplay() as it’s almost identical):

private let displayNamesForKind = [
 "album": NSLocalizedString("Album", comment: "Localized kind: Album"),
 "audiobook": NSLocalizedString("Audio Book",

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 238

 comment: "Localized kind: Audio Book"),
 "book": NSLocalizedString("Book", comment: "Localized kind: Book"),
 "ebook": NSLocalizedString("E-Book",
 comment: "Localized kind: E-Book"),
 "feature-movie": NSLocalizedString("Movie",
 comment: "Localized kind: Feature Movie"),
 "music-video": NSLocalizedString("Music Video",
 comment: "Localized kind: Music Video"),
 "podcast": NSLocalizedString("Podcast",
 comment: "Localized kind: Podcast"),
 "software": NSLocalizedString("App",
 comment: "Localized kind: Software"),
 "song": NSLocalizedString("Song",
 comment: "Localized kind: Song"),
 "tv-episode": NSLocalizedString("TV Episode",
 comment: "Localized kind: TV Episode"),
]

Now the code for kindForDisplay() becomes really short:

func kindForDisplay() -> String {
 return displayNamesForKind[kind] ?? kind
}

It’s nothing more than a simply dictionary lookup.

The ?? is the nil coalescing operator. Remember that dictionary lookups always
return an optional, just in case the key you’re looking for – kind in this case – does
not exist in the dictionary. That could happen if the iTunes web service added new
product types.

If the dictionary gives you nil, the ?? operator simply returns the original value of
kind. It’s equivalent to writing,

if let name = displayNamesForKind[kind] {
 return name
} else {
 return kind
}

but shorter!

InfoPlist.strings
The app itself can have a different name depending on the user’s language. The
name that is displayed on the iPhone’s home screen comes from the Bundle name
setting in Info.plist or if present, the Bundle display name setting.

To localize the texts from Info.plist you need a file named InfoPlist.strings.

➤ Add a new file to the project. In the template chooser scroll down to the
Resource group and choose Strings File. Name it InfoPlist.strings (the
capitalization matters!).

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 239

Adding a new Strings file to the project

➤ Open InfoPlist.strings and press the Localize… button from the File inspector.
Choose the Base localization.

➤ Also add a Dutch localization for this file.

➤ Open the Dutch version and add the following line:

CFBundleDisplayName = "StoreZoeker";

The key for the “Bundle display name” setting is CFBundleDisplayName.

(Dutch readers, sorry for the silly name. This is the best I could come up with. Feel
free to substitute your own.)

➤ Run the app and close it so you can see its icon. The Simulator’s stringboard
should now show the translated app name:

Even the app’s name is localized!

If you switch the Simulator back to English, the app name is StoreSearch again
(and of course, all the other text is back in English as well).

Regional settings
I don’t know if you noticed in some of the earlier screenshots, but even though you
switched the language to Dutch, the prices of the products still show up in US
dollars instead of Euros. That has two reasons:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 240

1. The language settings are independent of the regional settings. How currencies
and numbers are displayed depends on the region settings, not the language.

2. The app does not specify anything about country or language when it sends the
requests to the iTunes store, so the web service always returns prices in US
dollars.

First you’ll fix the app so that it sends information about the user’s language and
regional settings to the iTunes store. The method that you are going to change is
Search.swift’s iTunesURL(searchText, category) because that’s where you
construct the parameters that get sent to the web service.

➤ Change the iTunesURL(searchText, category) method to the following:

private func iTunesURL(searchText: String, category: Category) -> URL {
 let entityName = category.entityName
 let locale = Locale.autoupdatingCurrent
 let language = locale.identifier
 let countryCode = locale.regionCode ?? "en_US"

 let escapedSearchText = searchText.addingPercentEncoding(
 withAllowedCharacters: CharacterSet.urlQueryAllowed)!
 let urlString = String(format: "https://itunes.apple.com/search?term=
%@&limit=200&entity=%@&lang=%@&country=%@", escapedSearchText,
entityName, language, countryCode)

 let url = URL(string: urlString)
 print("URL: \(url!)")
 return url!
}

The regional settings are also referred to as the user’s locale and of course there is
an object for it, Locale. You get a reference to the autoupdatingCurrent locale.

This locale object is called “autoupdating” because it always reflects the current
state of the user’s locale settings. In other words, if the user changes her regional
information while the app is running, the app will automatically use these new
settings the next time it does something with that Locale object.

From the locale object you get the language and the country code. You then put
these two values into the URL using the &lang= and &country= parameters. Because
locale.regionCode may be nil, we use ?? "en_US" as a failsafe.

The print() lets you see what exactly the URL will be.

➤ Run the app and do a search. Xcode should output the following:

https://itunes.apple.com/search?
term=bird&limit=200&entity=&lang=en_US&country=US

It added “en_US” as the language identifier and just “US” as the country. For
products that have descriptions (such as apps) the iTunes web service will return
the English version of the description. The prices of all items will have USD as the

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 241

currency.

Note: It’s also possible you got an error message, which happens when the
locale identifier returns something nonsensical such as nl_US. This is due to
the combination of language and region settings on your Mac or the Simulator.
If you also change the region (see below), the error should disappear. The
iTunes web service does not support all combinations of languages and
regions, so an improvement to the app would be to check the value of
language against a list of allowed languages (left as an exercise for the
reader).

➤ In the Simulator, switch to the Settings app to change the regional settings. Go
to General → Language & Region → Region. Select Netherlands.

If the Simulator is still in Dutch, then it is under Algemeen → Taal en Regio →
Regio. Change it to Nederland.

➤ Run StoreSearch again and repeat the search.

Xcode now says:

https://itunes.apple.com/search?
term=bird&limit=200&entity=&lang=nl_NL&country=NL

The language and country have both been changed to NL (for the Netherlands). If
you tap on a search result you’ll see that the price is now in Euros:

The price according to the user’s region settings

Of course, you have to thank NumberFormatter for this. It now knows the region
settings are from the Netherlands so it uses a comma for the decimal point.

And because the web service now returns "EUR" as the currency code, the number
formatter puts the Euro symbol in front of the amount. You can get a lot of
functionality for free if you know which classes to use!

That’s it as far as internationalization goes. It takes only a small bit of effort that

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 242

definitely pays back. (You can put the Simulator back to English now.)

➤ It’s time to commit because you’re going to make some big changes in the next
section.

If you’ve also been tagging the code, you can call this v0.9, as you’re rapidly
approaching the 1.0 version that is ready for release.

The project files for the app up to this point are under 09 - Internationalization
in the tutorial’s Source Code folder.

The iPad
Even though the apps you’ve written so far are only for the iPhone, everything you
have learned also applies to writing iPad apps.

There really isn’t much difference between the two: they both run iOS and have
access to the exact same frameworks. But the iPad has a much bigger screen
(768×1024 points for regular iPads, 1024×1366 points for the 12.9-inch iPad Pro)
and that makes all the difference.

In this section you’ll make the app universal so that it runs on both the iPhone and
the iPad. You are not required to always make your apps universal; it is possible to
make apps that run only on the iPad and not on the iPhone.

➤ Go to the Project Settings screen and select the StoreSearch target.

In the General tab under Deployment Info there is a setting for Devices. It is
currently set to iPhone, but change it to Universal.

Making the app universal

That’s enough to make the app run on the iPad.

➤ Choose one of the iPad Simulators and run the app. Be aware that the iPad
Simulator is huge so you may need to press ⌘+3 or even ⌘+4 to make it fit on
your computer, especially if you don’t have a Retina screen.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 243

StoreSearch in the iPad Simulator

This works but simply blowing up the interface to iPad size is not taking advantage
of all the extra space the bigger screen offers. So instead you’re going to use some
of the special features that UIKit has to offer on the iPad, such as the split-view
controller and popovers.

The split-view controller
On the iPhone, a view controller manages the whole screen, although you’ve seen
that you can embed view controllers inside another.

On iPad it is common for view controllers to manage just a section of the screen,
because the display is so much bigger and often you will want to combine different
types of content in the same screen.

A good example of this is the split-view controller. It has two panes, a big one and a
smaller one.

The smaller pane is on the left (the “master” pane) and usually contains a list of
items. The right pane (the “detail” pane) shows more information about the thing
you have selected in the master list. Each pane has its own view controller.

If you’ve used an iPad before then you’ve seen the split-view controller in action
because it’s used in many of the standard apps such as Mail and Settings.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 244

The split-view controller in landscape and portrait orientations

If the iPad is in landscape, the split-view controller has enough room to show both
panes at the same time. However, in portrait mode only the detail view controller is
visible and the app provides a button that will slide the master pane into view. (You
can also swipe the screen to reveal and hide it.)

In this section you’ll convert the app to use such a split-view controller. This has
some consequences for the organization of the user interface.

Because the iPad has different dimensions from the iPhone it will also be used in
different ways. Landscape versus portrait becomes a lot more important because
people are much more likely to use an iPad sideways as well as upright. Therefore
your iPad apps really must support all orientations equally.

This implies that an iPad app shouldn’t make landscape show a completely different
UI than portrait, so what you did with the iPhone version of the app won’t fly on the
iPad – you can no longer show the LandscapeViewController when the user rotates
the device. That feature goes out of the window.

➤ Open Info.plist. There is a Supported interface orientations field with three
items. This corresponds to the Device Orientation checkboxes under Deployment
Info in the Project Settings screen:

The supported device orientations in Info.plist

The iPad can have its own supported orientations. On the iPhone you usually don’t
want to enable Upside Down but on the iPad you do.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 245

For some reason, Xcode 8 does not let you change the iPad-specific orientations in
the Deployment Info screen so you’ll have to add them to Info.plist by hand.

➤ Right-click and choose Add Row from the menu. From the list that pops up
choose Supported interface orientations (iPad). This already has one row for
“Portrait (bottom home button)”.

Add three more rows to this setting so that it looks like this:

Adding the supported interface orientations for iPad

All right, that takes care of the orientations. Run the app on the iPad simulator and
verify that the app always rotates so that the search bar is on top, no matter what
orientation you put the iPad in.

Let’s put that split-view controller into the app.

Thanks to universal storyboards you can simply add a Split View Controller object
to the storyboard. The split-view is only visible on the iPad; on the iPhone it stays
hidden.

This is a lot simpler than in previous iOS versions where you had to make two
different storyboard files, one for the iPhone and one for the iPad. Now you just
design your entire UI in single storyboard and it magically works across all device
types.

➤ Open Main.storyboard. Drag a new Split View Controller into the canvas. Put
it to the left of the Search scene.

➤ The Split View Controller comes with several scenes attached. Remove the white
View Controller. Also remove the one that says Root View Controller. Keep the
Navigation Controller.

It takes some creativity to make it all fit nicely on the storyboard. Here’s how I
arranged it:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 246

The storyboard with the new Split View Controller and Navigation Controller

A split-view controller has a relationship segue with two child view controllers, one
for the smaller master pane on the left and one for the bigger detail pane on the
right.

The obvious candidate for the master pane is the SearchViewController, and the
DetailViewController will go – where else? – into the detail pane.

➤ Ctrl-drag from the Split View Controller to the Search View Controller. Choose
Relationship Segue – master view controller.

This puts a new arrow between the split-view and the Search screen. (This arrow
used to be connected to the navigation controller.)

You won’t put the Detail View Controller directly into the split-view’s detail pane. It’s
better to wrap it inside a Navigation Controller first. That is necessary for portrait
mode where you need a button to slide the master pane into view. What better
place for this button than a navigation bar?

➤ Ctrl-drag from the Split View Controller to the Navigation Controller. Choose
Relationship Segue – detail view controller.

➤ Ctrl-drag from the Navigation Controller to the Detail View Controller. Make this a
Relationship Segue – root view controller.

The split-view must become the initial view controller so it gets loaded by the
storyboard first.

➤ Pick up the arrow that points to Search View Controller and drag it onto the Split
View Controller. (You can also check the Is Initial View Controller option in the
Attributes inspector.)

Now everything is connected:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 247

The master and detail panes are connected to the split-view

And that should be enough to get the app up and running with a split-view:

The app in a split-view controller

It will still take a bit of effort to make everything look good and work well, but this
was the first step.

If you play with the app you’ll notice that it still uses the logic from the iPhone
version and that doesn’t always work so well now that the UI sits in a split-view. For
example, tapping the price button from the new Detail pane crashes the app…

In the rest of this section you’ll be fixing up the app to make sure it doesn’t do
anything funny on the iPad!

First let’s patch up the master pane. It works fine in landscape but in portrait mode
it’s not visible. You can make it appear by swiping from the left edge of the screen
(try it out), but there should really be a button to reveal it as well – the so-called
display mode button. The split-view controller takes care of most of this logic but
you still need to put that button somewhere.

That’s why you put DetailViewController in a Navigation Controller, so you can add

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 248

this button – which is a UIBarButtonItem – into its navigation bar. (It’s not required
to use a navigation controller for this. For example, you could also add a toolbar to
the DetailViewController or use a different button altogether.)

➤ Add the following properties to AppDelegate.swift, inside the class:

var splitViewController: UISplitViewController {
 return window!.rootViewController as! UISplitViewController
}

var searchViewController: SearchViewController {
 return splitViewController.viewControllers.first
 as! SearchViewController
}

var detailNavigationController: UINavigationController {
 return splitViewController.viewControllers.last
 as! UINavigationController
}

var detailViewController: DetailViewController {
 return detailNavigationController.topViewController
 as! DetailViewController
}

These four computed properties refer to the various view controllers in the app:

• splitViewController: the top-level view controller

• searchViewController: the Search screen in the master pane of the split-view

• detailNavigationController: the UINavigationController in the detail pane of
the split-view

• detailViewController: the Detail screen inside the UINavigationController

By making properties for these view controllers you can easily refer to them without
having to go digging through the hierarchy like you did in the previous tutorials.

➤ Add the following line to application(didFinishLaunchingWithOptions):

detailViewController.navigationItem.leftBarButtonItem =
 splitViewController.displayModeButtonItem

This looks up the Detail screen and puts a button into its navigation item for
switching between the split-view display modes. Because the DetailViewController
is embedded in a UINavigationController, this button will automatically end up in
the navigation bar.

If you run the app now, all you get is a back arrow (in portrait):

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 249

The display mode button

It would be better if this back button said “Search”. You can fix that by giving the
view controller from the master pane a title.

➤ In SearchViewController.swift, add the following line to viewDidLoad():

title = NSLocalizedString("Search", comment: "Split-view master button")

Of course you’re using NSLocalizedString() because this is text that appears to the
user. Hint: the Dutch translation is “Zoeken”.

➤ Run the app and now you should have a proper button for bringing up the master
pane in portrait:

The display mode button has a title

Exercise. On the iPad flipping to landscape doesn’t bring up the special Landscape
View Controller anymore. That’s good because we don’t want to use it in the iPad
version of the app, but you haven’t changed anything in the code. Can you explain
what stops the landscape view from appearing?

Answer: The clue is in SearchViewController’s willTransition(). This shows the
landscape view when the new vertical size class becomes compact. But on the iPad
both the horizontal and vertical size class are always regular, regardless of the
device orientation. As a result, nothing happens upon rotation.

Improving the detail pane
The detail pane needs some more work – it just doesn’t look very good yet. Also,
tapping a row in the search results should fill in the split-view’s detail pane, not
bring up a new pop-up.

You’re using DetailViewController for both purposes (pop-up and detail pane), so
let’s give it a boolean that determines how it should behave. On the iPhone it will be
a pop-up; on the iPad it will not.

➤ Add the following instance variable to DetailViewController.swift:

var isPopUp = false

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 250

➤ Add the following lines to its viewDidLoad() method:

if isPopUp {
 let gestureRecognizer = UITapGestureRecognizer(target: self,
 action: #selector(close))
 gestureRecognizer.cancelsTouchesInView = false
 gestureRecognizer.delegate = self
 view.addGestureRecognizer(gestureRecognizer)

 view.backgroundColor = UIColor.clear
} else {
 view.backgroundColor = UIColor(patternImage:
 UIImage(named: "LandscapeBackground")!)
 popupView.isHidden = true
}

You’re supposed to move the code that adds the gesture recognizer into the if
isPopUp clause, so that tapping the background has no effect on the iPad. Likewise
for the line that sets the background color to clearColor.

This always hides the labels until a SearchResult is selected in the table view. The
background gets a pattern image to make things look a little nicer (it’s the same
image you used with the landscape view on the iPhone).

Making the detail pane look better

Initially this means the DetailViewController doesn’t show anything (except the
patterned background), so you will need to make SearchViewController tell the
DetailViewController that a new SearchResult has been selected.

Previously, SearchViewController created a new instance of DetailViewController
every time you tapped a row but now it will need to use the existing instance from
the split-view’s detail pane instead. But how does the SearchViewController know
what that instance is?

You will have to give it a reference to the DetailViewController. A good place for
that is in AppDelegate where you create those instances.

➤ Add the following line to application(didFinishLaunchingWithOptions):

searchViewController.splitViewDetail = detailViewController

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 251

This won’t work as-is because SearchViewController doesn’t have an instance
variable named splitViewDetail yet.

➤ Add this new property to SearchViewController.swift:

weak var splitViewDetail: DetailViewController?

Notice that you make this property weak. The SearchViewController isn’t responsible
for keeping the DetailViewController alive (the split-view controller is). It would
work fine without weak but specifying it makes the relationship clearer.

The variable is an optional because it will be nil when the app runs on an iPhone.

➤ To change what happens when the user taps a search result on the iPad, replace
tableView(didSelectRowAt) with:

func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 searchBar.resignFirstResponder()

 if view.window!.rootViewController!.traitCollection
 .horizontalSizeClass == .compact {
 tableView.deselectRow(at: indexPath, animated: true)
 performSegue(withIdentifier: "ShowDetail", sender: indexPath)

 } else {
 if case .results(let list) = search.state {
 splitViewDetail?.searchResult = list[indexPath.row]
 }
 }
}

On the iPhone this still does the same as before (pop up a new Detail screen), but
on the iPad it assigns the SearchResult object to the existing DetailViewController
that lives in the detail pane.

Note: To determine whether the app runs on an iPhone versus an iPad, you’re
looking at the horizontal size class of the window’s root view controller (which
is the UISplitViewController).

On the iPhone the horizontal size class is always compact (with the exception
of the 6 Plus and 6s Plus, more about that shortly). On the iPad it is always
regular.

The reason you’re looking at the size class from the root view controller and
not SearchViewController is that the latter’s size class is always horizontally
compact, even on iPad, because it sits inside the split-view’s master pane.

These changes by themselves don’t update the contents of the labels in the
DetailViewController yet, so let’s make that happen.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 252

The ideal place is in a property observer on the searchResult variable. After all, the
user interface needs to be updated right after you put a new SearchResult object
into this variable.

➤ Change the declaration of searchResult in DetailViewController.swift:

var searchResult: SearchResult! {
 didSet {
 if isViewLoaded {
 updateUI()
 }
 }
}

You’ve seen this pattern a few times before. You provide a didSet observer to
perform certain functionality when the value of a property changes. After
searchResult has changed, you call the updateUI() method to set the text on the
labels.

Notice that you first check whether the controller’s view is already loaded. It’s
possible that searchResult is given an object when the DetailViewController hasn’t
loaded its view yet – which is exactly what happens in the iPhone version of the
app.

In that case you don’t want to call updateUI() as there is no user interface yet to
update. The isViewLoaded check ensures this property observer only gets used
when on an iPad.

➤ Add the following line to the bottom of updateUI():

popupView.isHidden = false

This makes the view visible when on the iPad (recall that in viewDidLoad() you hid
the pop-up because there was nothing to show yet).

➤ Run the app. Now the detail pane should show details about the selected search
result. Notice that the row in the table stays selected as well.

The detail pane shows additional info about the selected item

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 253

One small problem: the Detail pop-up no longer works properly on the iPhone
because isPopUp is always false (try it out, it’s hilarious).

➤ In prepare(for:sender:) in SearchViewController.swift, add the line:

detailViewController.isPopUp = true

➤ Do the same thing in LandscapeViewController.swift. Verify that the Detail
screen works properly in all situations.

It would be nice if the app shows its name in the big navigation bar on top of the
detail pane. Currently all that space seems wasted. Ideally, this would use the
localized name of the app.

You could use NSLocalizedString() and put the name into the Localizable.strings
files, but considering that you already put the localized app name in InfoPlist.strings
it would be handy if you could use that. As it turns out, you can.

➤ In DetailViewController.swift, add this line to the else clause in
viewDidLoad():

if let displayName = Bundle.main.
 localizedInfoDictionary?["CFBundleDisplayName"] as? String {
 title = displayName
}

The title property is used by the UINavigationController to put the title text in the
navigation bar. You set it to the value of the CFBundleDisplayName setting from the
localized version of Info.plist, i.e. the translations from InfoPlist.strings.

Because NSBundle’s localizedInfoDictionary can be nil you need to unwrap it. The
value stored under the "CFBundleDisplayName" key may also be nil. And finally, the
as? cast to turn the value to a String can also potentially fail. If you’re counting
along, that is three things that can go wrong in this line of code.

That’s why it’s called optional chaining: you can check a chain of optionals in a
single statement. If any of them is nil, the code inside the if is skipped. That’s a
lot shorter than writing three separate if-statements!

If you were to run the app right now, no title would show up still (unless you have
the Simulator in Dutch) because you did not actually put a translation for
CFBundleDisplayName in the English version of InfoPlist.strings.

➤ Add the following line to InfoPlist.strings (Base):

CFBundleDisplayName = "StoreSearch";

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 254

That’s a good-looking title

There are a few other small improvements to make. On the iPhone it made sense to
give the search bar the input focus so the keyboard appeared immediately after
launching the app. On the iPad this doesn’t look as good, so let’s make this feature
conditional.

➤ In the viewDidLoad() method from SearchViewController.swift, put the call to
becomeFirstResponder() in an if-statement:

if UIDevice.current.userInterfaceIdiom != .pad {
 searchBar.becomeFirstResponder()
}

To figure out whether the app is running on the iPhone or on the iPad, you look at
the current userInterfaceIdiom. This is either .pad or .phone – an iPod touch counts
as a phone in this case.

The master pane needs some tweaking also, especially in portrait. After you tap a
search result, the master pane stays visible and obscures about half of the detail
pane. It would be better to hide the master pane when the user makes a selection.

➤ Add the following method to SearchViewController.swift:

func hideMasterPane() {
 UIView.animate(withDuration: 0.25, animations: {
 self.splitViewController!.preferredDisplayMode = .primaryHidden
 }, completion: { _ in
 self.splitViewController!.preferredDisplayMode = .automatic
 })
}

Every view controller has a built-in splitViewController property that is non-nil if
the view controller is currently inside a UISplitViewController.

You can tell the split-view to change its display mode to .primaryHidden to hide the
master pane. You do this in an animation block, so the master pane disappears with
a smooth animation.

The trick is to restore the preferred display mode to .automatic after the animation
completes, otherwise the master pane stays hidden even in landscape!

➤ Add the following lines to tableView(didSelectRowAt) in the else clause, right
below the if case .results statement:

if splitViewController!.displayMode != .allVisible {
 hideMasterPane()

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 255

}

The .allVisible mode only applies in landscape, so this says, “if the split-view is
not in landscape, hide the master pane when a row gets tapped.”

➤ Try it out. Put the iPad in portrait, do a search, and tap a row. Now the master
pane will slide out when you tap a row in the table.

Congrats! You have successfully repurposed the Detail pop-up to also work as the
detail pane of a split-view controller. Whether this is possible in your own apps
depends on how different you want the user interfaces of the iPhone and iPad
versions to be.

Often you’ll find that the iPad user interface for your app is different enough from
the iPhone’s that you will have to make all new view controllers with some
duplicated logic. If you’re lucky you may be able to use the same view controllers
for both versions of the app but often that is more trouble than it’s worth.

The Apple Developer Forums

When I wrote this chapter, how to hide the master pane was not explained
anywhere in the official UISplitViewController documentation and I had
trouble getting it to work properly.

Desperate, I turned to the Apple Developer Forums and asked my question
there. Within a few hours I received a reply from a fellow developer who ran
into the same problem and who found a solution – thanks, user “timac”!

So if you’re stuck, don’t forget to look at the Apple Developer Forums for a
solution: https://forums.developer.apple.com

Size classes in the storyboard
Even though you’ve placed the existing DetailViewController in the detail pane,
the app is not using all that extra iPad space effectively. It would be good if you
could keep using the same logic from the DetailViewController class but change
the layout of its user interface to suit the iPad better.

If you like suffering, you could do if UIDevice.current.userInterfaceIdiom == .pad
in viewDidLoad() and move all the labels around programmatically, but this is
exactly the sort of thing size classes were invented for.

➤ Open Main.storyboard and take a look at the View as: pane.

Size classes in the View as: pane

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 256

Notice how it says iPhone SE (wC hR)? The wC and hR are the size class for this
particular device: the size class for the width is compact (wC), and the size class for
the height is regular (hR).

Recall that there are two possible size classes, compact and regular, and that you
can assign one of these values to the horizontal axis (Width) and one to the vertical
axis (Height).

Here is the diagram again:

Horizontal and vertical size classes

➤ Use the View as: pane to switch to iPad Pro (9.7″). Not only are the view
controllers larger now, but you’ll see the size class has changed to wR hR, or
regular in both width and height.

The size classes for the iPad

We want to make the Detail pop-up bigger when the app runs on the iPad. However,
if you make any edits to the storyboard right now, these edits will also affect the
design of the app in iPhone mode. Fortunately, there is a way to make edits that
apply to a specific size class only.

You can tell Interface Builder that you only want to change the layout for the
regular width size class (wR), but leave compact width alone (wC). Now those
edits will only affect the appearance of the app on the iPad.

For example, the Detail pane doesn’t need a close button on the iPad. It is not a
pop-up so there’s no reason to dismiss it. Let’s remove that button from the
storyboard.

➤ Select the Close Button. Go to the Attributes inspector and scroll all the way to

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 257

the bottom, to the Installed option.

The installed checkbox

This option lets you remove a view from a specific size class, while leaving it visible
in other size classes.

➤ Click the tiny + button to the left of Installed. This brings up a menu. Choose
Width: Regular, Height: Regular and click on Add Variation:

Adding a variation for the regular, regular size class

This adds a new line with a second Installed checkbox:

The option can be changed on a per-size class basis

➤ Uncheck Installed for wR hR. Now the Close Button disappears from the scene
(if the storyboard is in iPad mode).

The Close Button still exists, but it is not installed in this size class. You can see the
button in the outline pane but it is grayed out:

The Close Button is still present but grayed out

➤ Use the View as: panel to switch back to iPhone SE.

Notice how the Close Button is back in its original position. You’ve only removed it
from the storyboard design for the iPad. That’s the power of universal storyboards
and size classes.

➤ Run the app and you’ll see that the close button really is gone on the iPad:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 258

No more close button in the top-left corner

Using the same principle you can change the layout of the Detail screen to be
completely different between the iPhone and iPad versions.

➤ In the storyboard, switch to the iPad Pro layout again.

You will now change the size of the Width constraint for the Pop-up View from 240
to 500 points.

➤ Select the Pop-up View and go to the Size inspector. The Constraints section
shows the constraints for this view:

The Size inspector lists the constraints for the selected view

The Width Equals: 240 constraint has an Edit button. If you click that, a popup
appears that lets you change the width. However, that will change this constraint
for all size classes. You want to change it for the iPad only. Instead, do the
following.

➤ Double-click Width Equals: 240. This brings up the Size inspector for just that
constraint:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 259

The Size inspector for the Width constraint

(If you just type in a new value for Constant, the constraint will become larger for
all size classes again.)

➤ Click the + button next to Constant. In the popup choose Width: Regular,
Height: Regular and click Add Variation. This adds a second row. Type 500 into
the new wR hR field.

Adding a size class variation for the Constant

Now the Pop-up View is a lot wider. Next up you’ll rearrange and resize the labels to
take advantage of the extra space.

The Pop-up View after changing the Width constraint

➤ In a similar manner, change the Width and Height constraints of the Image
View to 180.

➤ Select the Vertical Space constraint between the Name label and the Image
View and go to its Size inspector. Add a new variation for Constant and type 28
into the wR hR field.

➤ Repeat this procedure for the other Vertical Space constraints. Each time use
the + button to add a new rule for Width: Regular, Height: Regular, and make
the new Constant 20 points taller than standard one.

Remember, if the constraints are difficult to pinpoint, then select the view they’re
attached to instead and use the Size inspector to find the actual constraints.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 260

➤ Make the Vertical Space at the top of the Image View 20 points.

➤ And finally, put the $9.99 button at 20 points from the sizes instead of 6.

You should end up with something that looks like this:

The Pop-up View after changing the vertical spaces

Just to double-check, switch back to iPhone SE and make sure that the Detail pane
is restored to its original dimensions. If not, then you may have changed one of the
original constraints instead of making a variation for the iPad’s size class.

In the iPad’s version of the Detail pane, the text is now tiny compared to the pop-
up background, so let’s change the fonts. That works in the same fashion: you add
a customization for this size class with the + button, then change the property.
(Any attribute that has a small + in front of it can be customized for different size
classes.)

➤ Select the Name label. In the Attributes inspector click the + in front of Font.
Choose the System Bold font, size 28.

Adding a size class variation for the label’s font

If orange lines appear, use the Resolve Auto Layout Issues menu to update the
positions and sizes of the views so they correspond with the constraints again (tip:
choose Update Frames from the “All Views” section).

➤ Change the font of the other labels to System, size 20. You can do this in one go
by making a multiple-selection.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 261

I’m not entirely happy with the margins for the labels yet.

➤ Change all the “leading” Horizontal Space constraints to 20 for this size class.

The final layout should look like this:

The layout for the Pop-up View on iPad

Switch back to iPhone SE to make sure all the constraints are still correct there.

➤ Run the app and you should have a much bigger detail view:

The iPad now uses different constraints for the detail pane

Exercise. The first time the detail pane shows its contents they appear quite
abruptly because you simply set the isHidden property of popupView to false, which
causes it to appear instantaneously. See if you can make it show up using a cool
animation.

➤ This is probably a good time to try the app on the iPhone again. The changes
you’ve made should be compatible with the iPhone version, but it’s smart to make
sure.

If you’re satisfied everything works as it should, then commit the changes.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 262

Slide over and split-screen on iPad

iOS has a very handy split-screen feature that lets you run two apps side-by-
side. It only works on the higher-end iPads such as the iPad Air 2 and iPad Pro.
Because you used size classes to build the app’s user interface, split-screen
support works flawlessly.

Try it out: run the app on the iPad Air 2 or iPad Pro simulator. Swipe from the
right edge of the screen towards the middle. This opens a panel that lets you
choose another app to overlay on top of StoreSearch. To put the two apps
side-by-side, drag the divider bar to the middle of the screen. Thanks to size
classes, the layout of StoreSearch automatically adapts to the allotted space.

The View as: panel has a button Vary for Traits. You can use this to change
how a view controller acts when it is part of such a split screen.

Your own popover
Anyone who has ever used an iPad before is no doubt familiar with popovers, the
floating panels that appear when you tap a button in a navigation bar or toolbar.
They are a very handy UI element.

A popover is nothing more than a view controller that is presented in a special way.
In this section you’ll create a popover for a simple menu.

➤ In the storyboard, first switch back to iPhone SE because in iPad mode the view
controllers are huge and we can use the extra space to work with.

➤ Drag a new Table View Controller into the canvas and place it next to the
Detail screen.

➤ Change the table view to Grouped style and give it Static Cells.

➤ Add these rows (change the cell style to Basic):

The design for the new table view controller

This just puts three items in the table. You will only do something with the first one
in this tutorial. Feel free to implement the functionality of the other two by yourself.

To show this view controller inside a popover, you first have to add a button to the

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 263

navigation bar so that there is something to trigger the popover from.

➤ From the Object Library drag a new Bar Button Item into the Detail View
Controller’s Navigation Item. You can find this in the outline pane. Make sure the
Bar Button Item is in the Right Bar Button Items group.

The new bar button item in the Navigation Item

➤ Change the bar button’s System Item to Action.

This button won’t show up on the iPhone because there the Detail pop-up doesn’t
sit in a navigation controller.

➤ Ctrl-drag from the bar button (in the outline pane) to the Table View Controller to
make segue. Choose segue type Action Segue – Present As Popover.

The new bar button item in the Navigation Item

➤ Give the segue the identifier ShowMenu.

If you run the app and press the menu button, the app looks like this:

That menu is a bit too tall

The popover doesn’t really know how big its content view controller is, so it just
picks a size. That’s ugly, but you can tell it how big the view controller should be
with the preferred content size property.

➤ In the Attributes inspector for the Table View Controller, in the Content
Size boxes type Width: 320, Height: 204.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 264

Changing the preferred width and height of the popover

Now the size of the menu popover looks a lot more appropriate:

The menu popover with a size that fits

When a popover is visible, all other controls on the screen become inactive. The
user has to tap outside of the popover to dismiss it before she can use the rest of
the screen again (you can make exceptions to this by setting the popover’s
passthroughViews property).

While the menu popover is visible, the other bar button (Search) is still active as
well if you’re in portrait mode. This can create a situation where two popovers are
open at the same time:

Both popovers are visible

That is a violation of the rules from Apple’s Human Interface Guidelines, also known
as the “HIG”. The folks at Apple don’t like it when apps show more than one
popover at a time, probably because it is confusing to the user which one requires
input. The app will be rejected from the App Store for this, so you have to make
sure this situation cannot happen.

The scenario you need to handle is when the user first opens the menu popover
followed by a tap on the Search button. To fix this issue, you need to know when
the Search button is pressed and the master pane becomes visible, so you can hide
the menu popover.

Wouldn’t you know it… of course there is a delegate method for that.

➤ Add the following extension to the bottom of AppDelegate.swift:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 265

extension AppDelegate: UISplitViewControllerDelegate {
 func splitViewController(_ svc: UISplitViewController,
 willChangeTo displayMode: UISplitViewControllerDisplayMode) {
 print(#function)
 if displayMode == .primaryOverlay {
 svc.dismiss(animated: true, completion: nil)
 }
 }
}

This method dismisses any presented view controller – that would be the popover –
if the display mode changes to .primaryOverlay, in other words if the master pane
becomes visible.

Note: The line print(#function) is a useful tip for debugging. This prints out
the name of the current function or method to the Xcode debug pane. That
quickly tells you when a certain method is being called.

You still need to tell the split-view controller that AppDelegate is its delegate.

➤ Add the following line to application(didFinishLaunchingWithOptions):

splitViewController.delegate = self

And that should do it! Try having both the master pane and the popover in portrait
mode. Ten bucks says you can’t!

Sending email from within the app
Now let’s make the “Send Support Email” menu option work. Letting users send an
email from within your app is pretty easy.

iOS provides the MFMailComposeViewController class that takes care of everything
for you. It lets the user type an email and then sends the email using the mail
account that is set up on the device.

All you have to do is create an MFMailComposeViewController object and present it
on the screen.

The question is: who will be responsible for this mail compose controller? It can’t be
the popover because that view controller will be deallocated once the popover goes
away.

Instead, you will let the DetailViewController handle the sending of the email,
mainly because this is the screen that brings up the popover in the first place
(through the segue from its bar button item). DetailViewController is the only
object that knows anything about the popover.

To make this work, you’ll create a new class MenuViewController for the popover,

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 266

give it a delegate protocol, and have DetailViewController implement those
delegate methods.

➤ Add a new file to the project using the Cocoa Touch Class template. Name it
MenuViewController, subclass of UITableViewController.

➤ Remove all the data source methods from this file because you don’t need those
for a table view with static cells.

➤ In the storyboard, change the Class of the popover’s table view controller to
MenuViewController.

➤ Add a new protocol to MenuViewController.swift (outside the class):

protocol MenuViewControllerDelegate: class {
 func menuViewControllerSendSupportEmail(_ controller:
 MenuViewController)
}

➤ Also add a property for this protocol inside the class:

weak var delegate: MenuViewControllerDelegate?

Like all delegate properties this is weak because you don’t want MenuViewController
to “own” the object that implements the delegate methods.

➤ Finally, add tableView(didSelectRowAt) to handle taps on the rows from the table
view:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 tableView.deselectRow(at: indexPath, animated: true)

 if indexPath.row == 0 {
 delegate?.menuViewControllerSendSupportEmail(self)
 }
}

Now you’ll have to make DetailViewController the delegate for this menu popover.
Of course that happens in prepare-for-segue.

➤ Add the prepare(for:sender:) method to DetailViewController.swift:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "ShowMenu" {
 let controller = segue.destination as! MenuViewController
 controller.delegate = self
 }
}

This tells the MenuViewController object who the DetailViewController is.

➤ Also add the following extension to the bottom of the source file:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 267

extension DetailViewController: MenuViewControllerDelegate {
 func menuViewControllerSendSupportEmail(_: MenuViewController) {
 }
}

It doesn’t do anything yet but the app should compile without errors again.

Run the app and tap Send Support Email. Notice how the popover doesn’t disappear
yet. You have to manually dismiss it before you can show the mail compose sheet.

➤ The MFMailComposeViewController lives in the MessageUI framework, so import
that in DetailViewController.swift:

import MessageUI

➤ Then add the following code into menuViewControllerSendSupportEmail():

dismiss(animated: true) {
 if MFMailComposeViewController.canSendMail() {
 let controller = MFMailComposeViewController()
 controller.setSubject(NSLocalizedString("Support Request",
 comment: "Email subject"))
 controller.setToRecipients(["your@email-address-here.com"])
 self.present(controller, animated: true, completion: nil)
 }
}

This first calls dismiss(animated) to hide the popover. This method takes a
completion closure that until now you’ve always left nil. Here you do give it a
closure – using trailing syntax – that brings up the MFMailComposeViewController
after the popover has faded away.

It’s not a good idea to present a new view controller while the previous one is still
in the process of being dismissed, which is why you wait to show the mail compose
sheet until the popover is done animating.

To use the MFMailComposeViewController object, you have to give it the subject of
the email and the email address of the recipient. You probably should put your own
email address here!

➤ Run the app and pick the Send Support Email menu option. A form slides up the
screen that lets you write an email.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 268

The email interface

Note: If you’re running the app on a device and you don’t see the email form,
you may not have set up any email accounts on your device.

If on the Simulator the email form does not respond, then that’s caused by a
bug in the “MailCompositionService”. It has a tendency to crash.

Notice that the Send and Cancel buttons don’t actually appear to do anything.
That’s because you still need to implement the delegate for this screen.

➤ Add a new extension to DetailViewController.swift:

extension DetailViewController: MFMailComposeViewControllerDelegate {
 func mailComposeController(_ controller: MFMailComposeViewController,
 didFinishWith result: MFMailComposeResult, error: Error?) {
 dismiss(animated: true, completion: nil)
 }
}

The result parameter says whether the mail could be successfully sent or not. This
app doesn’t really care about that, but you could show an alert in case of an error if
you want. Check the documentation for the possible result codes.

➤ In the menuViewControllerSendSupportEmail() method, add the following line:

controller.mailComposeDelegate = self

➤ Now if you press Cancel or Send, the mail compose sheet gets dismissed.

If you’re testing on the Simulator, no email actually gets sent out, so don’t worry
about spamming anyone when you’re testing this.

Did you notice that the mail form did not take up the entire space in the screen in
landscape, but when you rotate to portrait it does? That is called a page sheet.

On the iPhone if you presented a modal view controller it always took over the
entire screen, but on the iPad you have several options.

The page sheet is probably the nicest option for the MFMailComposeViewController,
but let’s experiment with the other ones as well, shall we?

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 269

➤ In menuViewControllerSendSupportEmail(), add the following line:

controller.modalPresentationStyle = .formSheet

The modalPresentationStyle property determines how a modal view controller is
presented on the iPad. You’ve switched it from the default page sheet to a form
sheet, which looks like this:

The email interface in a form sheet

A form sheet is smaller than a page sheet so it always takes up less room than the
entire screen. There is also a “full screen” presentation style that always covers the
entire screen, even in landscape. Try it out!

Landscape on the iPhone 6s Plus and 7 Plus
The iPhone Plus is a strange beast. It mostly works like any other iPhone but
sometimes it gets ideas and pretends to be an iPad.

➤ Run the app on the iPhone 7 Plus Simulator, and rotate to landscape.

The app will look something like this:

The landscape screen appears in the split-view’s master pane

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 270

LOL. The app tries to do both: show the split-view controller and the special
landscape view at the same time. Obviously, that’s not going to work.

The iPhone 7 Plus, and the older 6s Plus and 6 Plus, is so big that it’s almost a small
iPad. The designers at Apple decided that in landscape orientation the Plus should
behave like an iPad, and therefore it shows the split-view controller.

What’s the trick? Size classes, of course. On a landscape iPhone Plus, the horizontal
size class is regular, not compact. (The vertical size class is still compact, just like
on the smaller iPhone models.)

To stop the LandscapeViewController from showing up, you have to make the
rotation logic smarter.

➤ In SearchViewController.swift, change willTransition() to:

override func willTransition(to newCollection: UITraitCollection,
 with coordinator: UIViewControllerTransitionCoordinator) {
 super.willTransition(to: newCollection, with: coordinator)

 let rect = UIScreen.main.bounds
 if (rect.width == 736 && rect.height == 414) || // portrait
 (rect.width == 414 && rect.height == 736) { // landscape
 if presentedViewController != nil {
 dismiss(animated: true, completion: nil)
 }
 } else if UIDevice.current.userInterfaceIdiom != .pad {
 switch newCollection.verticalSizeClass {
 case .compact:
 showLandscape(with: coordinator)
 case .regular, .unspecified:
 hideLandscape(with: coordinator)
 }
 }
}

The bottom bit of this method is as before; it checks the vertical size class and
decides whether to show or hide the LandscapeViewController.

You don’t want to do this for the iPhone 7 Plus, so you need to detect somehow that
the app is running on the Plus. There are a couple of ways you can do this:

• Look at the width and height of the screen. The dimensions of the iPhone 7 Plus
are 736 by 414 points.

• Look at the screen scale. Currently the only device with a 3x screen is the Plus.
This is not an ideal method because users can enable Display Zoom to get a
zoomed-in display with larger text and graphics. That still reports a 3x screen
scale but it no longer gives the 6s Plus its own size class. It now acts like other
iPhones and the split-view won’t appear anymore.

• Look at the hardware machine name of the device. There are APIs for finding this
out, but you have to be careful: often one type of iPhone can have multiple

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 271

model names, depending on the cellular chipset used or other factors.

What about the size class? That sounds like it would be the obvious thing to tell the
different devices apart. Unfortunately, looking at the size class doesn’t work.

If the device is in portrait, the 6s Plus has the same size classes as the other iPhone
models. In other words, in portrait you can’t tell from the size class alone whether
the app is running on a Plus or not – only in landscape.

The approach you’re using in this app is to look at the screen dimensions. That’s
the cleanest solution I could find. You need to check for both orientations, because
the screen bounds change depending on the orientation of the device.

Once you’ve detected the app runs on an iPhone 6s Plus or 7 Plus, you no longer
show the landscape view. You do dismiss any Detail pop-up that may still be visible
before you rotate to landscape.

➤ Try it out. Now the iPhone 7 Plus shows a proper split-view:

The app on the iPhone 7 Plus with a split-view

Of course the Detail pane now uses the iPhone-size design, not the iPad design.

That’s because the size class for DetailViewController is now regular width,
compact height. You didn’t make a specific design for those size classes, so the app
uses the default design.

That’s fine for the size of the Detail view, but it does mean the close button is
visible again.

➤ Open the storyboard and select the Close Button. In the Attributes inspector,
add a new row for Installed and uncheck it:

Adding a variation for size class width regular, height compact

➤ Select the Center Y Alignment constraint on Pop-up View. Change its
Constant to 20, but only for this size class. This moves the Detail panel down a

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 272

bit.

(Remember you can preview the effect of these changes by using the View as:
panel to switch to the iPhone 6s Plus and put it in landscape mode.)

The finished StoreSearch app on the iPhone 6s Plus or 7 Plus

And that’s it for the StoreSearch app! Congratulations for making it this far, it has
been a long tutorial.

➤ Celebrate by committing the final version of the source code and tagging it v1.0!

You can find the project files for the complete app under 10 - Finished App in the
tutorial’s Source Code folder.

What do you do with an app that is finished? Upload it to the App Store, of course!
(And with a little luck, make some big bucks…)

Distributing the app
Throughout these tutorials you’ve probably been testing the apps on the Simulator
and occasionally on your device. That’s great, but when the app is nearly done you
may want to let other people beta test it. You can do this on iOS with so-called ad
hoc distributions.

Your Developer Program membership allows you to register up to 100 devices with
your account and to distribute your apps to the users of those devices, without
requiring that they buy the apps from the App Store. You simply build your app in
Xcode and send your testers a ZIP file that contains your application bundle and
your Ad Hoc Distribution profile. The beta testers can then drag these files into
iTunes and sync their iPhones and iPads to install the app.

In this section you’ll learn how to make an Ad Hoc distribution for the StoreSearch
app. Later on I’ll also show you how to submit the app to the App Store, which is a
very similar process. (By the way, I’d appreciate it if you don’t actually submit the

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 273

apps from these tutorials. Let’s not spam the App Store with dozens of identical
“StoreSearch” or “Bull’s Eye” apps.)

Join the program
Once you’re ready to make your creations available on the App Store, it’s time to
join the paid Apple Developer Program.

To sign up, go to developer.apple.com/programs/ and click the blue Enroll button.

On the sign-up page you’ll need to enter your Apple ID. Your developer program
membership will be tied to this account. It’s OK to use the same Apple ID that
you’re already using with iTunes and your iPhone, but if you run a business you
might want to create a new Apple ID to keep these things separate.

You can enroll as an Individual or as an Organization. There is also an Enterprise
program but that’s for big companies who will be distributing apps within their own
organization only. If you’re still in school, the University Program may be worth
looking into.

You buy the Developer Program membership from the online Apple Store for your
particular country. Once your payment is processed you’ll receive an activation code
that you use to activate your account.

Signing up is usually pretty quick. In the worst case it may take a few weeks, as
Apple will check your credit card details and if they find anything out of the ordinary
(such as a misspelled name) your application may run into delays. So make sure to
enter your credit card details correctly or you’ll be in for an agonizing wait.

If you’re signing up as an Organization then you also need to provide a D-U-N-S
Number, which is free but may take some time to request. You cannot register as
an Organization if you have a single-person business such as a sole proprietorship
or DBA (“doing business as”). In that case you need to sign up as an Individual.

You will have to renew your membership every year but if you’re serious about
developing apps then that $99/year will be worth it.

The distribution profile
Before you can put your app on a device, it must be signed with your certificate
and a provisioning profile. So far when you’ve run apps on your device, you have
used the Developer Certificate and the Team Provisioning Profile but these are only
for development purposes and can only be used from within Xcode.

You probably don’t want to send your app’s source code to your beta testers, or
require them to mess around with Xcode, so you must create a new certificate and
profile that are just for distribution.

➤ Open your favorite web browser and surf to the Developer Member Center at
https://developer.apple.com/membercenter/. Sign in and go to Certificates,

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 274

Identifiers & Profiles.

Note: Like any piece of software, the Developer Member Center changes every
now and then. It’s possible that by the time you read this, some of the options
are in different places or have different names. The general flow should still be
the same, though. And if you really get stuck, online help is usually available.

Tip: If using this website gives you problems such as pages not loading
correctly, then try it with Safari. Other browsers sometimes give strange
errors.

➤ Click on App IDs under Identifiers in the sidebar. In the new page that
appears, press the + button to add a new App ID:

Creating a new App ID

➤ Fill in the App ID Description field. This can be anything you want – it’s just for
usage on the Provisioning Portal.

➤ The App ID Prefix field contains the ID for your team. You can leave this as-is.

➤ Under App ID Suffix, select Explicit App ID. In the Bundle ID field you must
enter the identifier that you used when you created the Xcode project. For me that
is com.razeware.StoreSearch.

The Bundle ID must match with the identifier from Xcode

If you want your app to support push notifications, In-App Purchases, or iCloud
then you can also configure that here. StoreSearch doesn’t need any of that so
leave the other fields on the default settings.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 275

➤ Press Continue and then Register to create the App ID. The portal will now
generate the App ID for you and add it to the list.

The full App ID is something like U89ECKP4Y4.com.yourname.StoreSearch.
That number in front is the ID of your team.

If you do not have a distribution certificate yet, you have to create one.

➤ In the sidebar go to Certificates, Production. If there is nothing in the list,
click the + button to create a new certificate.

Creating a new distribution certificate

➤ Select the App Store and Ad Hoc type, under Production. Click Continue.

As part of the certificate creation process you need to generate a CSR or Certificate
Signing Request. It sounds scary but follow these steps and you’ll be fine:

➤ Open the Keychain Access app on your Mac (it is in Applications/Utilities).

➤ From the Keychain Access menu, choose Certificate Assistant → Request a
Certificate from a Certificate Authority…:

Using Keychain Access to create a CSR

➤ Fill out the fields in the window that pops up:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 276

Filling out the certificate request

• User Email Address: Enter the email address that you used to sign into the
Member Center. This is the Apple ID from your Developer Program account.

• Common Name: Fill in your name or your company’s name.

➤ Check the Saved to disk option and press Continue. Save the file to your
Desktop.

➤ Go back to the web browser and continue to the next step. Upload the
CertificateSigningRequest.certSigningRequest file you just created and click
Generate.

After a couple of seconds you should be the owner of a brand new distribution
certificate.

➤ Click the big Download button. This saves a file named ios_distribution.cer on
your computer. Double-click this file to install it. You should be able to see the new
certificate in the Keychain Access app under My Certificates.

There’s one more thing to do in the Member Center.

➤ In the left-hand menu, under Provisioning Profiles, click Distribution. This
will show your current distribution profiles. (You probably don’t have any yet.)

There are two types of distribution profiles: Ad Hoc and App Store. You’ll first make
an Ad Hoc profile.

➤ Click the + button to create a new profile:

Creating a new provisioning profile for distribution

➤ Select Ad Hoc and click Continue.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 277

➤ The next step asks you to select an App ID. Pick the App ID that you just created
(“StoreSearch”).

Now the portal asks you to select the certificate that should be used to create this
provisioning profile:

Selecting the certificate

In the next step you need to select the devices for which the provisioning profile is
valid. If you’re sending the app to beta testers, their devices need to be included in
this list. (To add a new device, use the Devices menu option in the portal).

➤ Select your device(s) from the list and click Continue.

➤ Give the profile a name, for example StoreSearch Ad Hoc. Picking a good name
is useful for when you have a lot of apps.

Giving the provisioning profile a name

➤ If everything looks OK, click Generate.

After a few seconds the provisioning profile is ready for download.

The provisioning profile was successfully created

➤ Click Download to download the file StoreSearch_Ad_Hoc.mobileprovision.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 278

Keep this file safe somewhere; you’ll need it later.

➤ Go back to Xcode and open the Preferences window. Go to the Accounts tab.
If you haven’t added your Developer Program account here yet, then click + and fill
in your Apple ID and password.

➤ Click on View Details… You should see something like this:

The certificates and provisioning profiles for this account

Click the Download button to load the new StoreSearch Ad Hoc provisioning
profile into Xcode.

Great, you’re just about ready to build the app for distribution.

Debug builds vs. Release builds
Xcode can build your app in a variety of build configurations. Projects come
standard with two build configurations, Debug and Release. While you were
developing the app you’ve always been using Debug mode, but when you build your
app for distribution it will use Release mode.

The difference is that in Release mode certain optimizations will be turned on to
make your code as fast as possible, and certain debugging tools will be turned off.
Not including the debugging tools will make your code smaller and faster – they’re
not much use to an end user anyway.

However, changing how your app gets built does mean that your app may act
differently under certain circumstances. Therefore it’s a good idea to give your app
a thorough testing in Release mode as well, preferably by doing an Ad Hoc install
on your own devices. That is the closest you will get to simulating what a user sees

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 279

when he downloads your app from the App Store.

You can add additional build configurations if you want. Some people add a new
configuration for Ad Hoc and another for App Store that lets them tweak the build
settings for the different types of distribution.

➤ In the Project Settings screen, in the General tab, choose the correct Team.
This determines which certificate and provisioning profile Xcode will use.

Choosing the team

➤ In the picker at the top of the Xcode window choose Generic iOS Device (or the
name of your device if it is connected to your Mac) rather than a Simulator.

➤ From the Xcode menu bar, select Product → Archive. If the Archive option is
grayed out, then the scheme is probably set to Simulator rather than the device.

Now Xcode will build the app. By default, the Archive operation uses the Release
build configuration.

➤ When the build is done and without errors, Xcode opens the Organizer window on
the Archives tab:

The Archives section in the Organizer window

If you right-click the archive in the list and choose Show in Finder, the folder that
contains the archive file opens:

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 280

The archive in Finder

By right-clicking the .xcarchive file and choosing Show Package Contents, you
can take a peek inside. In the folder Products you will find the application bundle.
To see what is in the application bundle, right-click it and choose Show Package
Contents again.

dSYM files
The folder dSYMs inside the archive contains a very important file named
StoreSearch.app.dSYM. This dSYM file contains symbolic names for the classes
and methods in your app. That information has been stripped out from the final
executable but is of vital importance if you receive a crash report from a customer.
(You can see these crash reports in the Organizer window or download them
through the iTunes Connect website.)

Crash reports contain heaps of numbers that are meaningless unless combined with
the debug symbols from the dSYM file. When properly “symbolicated”, the crash log
will tell you where the crash happened – essential for debugging! – but in order for
that to work Xcode must be able to find the dSYM files.

So it is important that you don’t throw away these .xcarchive files for the versions
of your app that you send to beta testers or the App Store. You don’t have to keep
them in the folder where Xcode puts them per se, but you should keep them
around somewhere and back them up.

You don’t want to get crash reports that you can’t make any sense of! Even better,
don’t make apps that crash, so you won’t get any crash reports at all…

The .xcarchive isn’t the thing that you will send to your beta testers. Instead, Xcode
will build another package that is based on the contents of this archive.

➤ In the Organizer window select the archive from the list and press the Export…
button. In the screen that appears, select the Save for Ad Hoc Deployment

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 281

option. Click Next.

Choosing the method of distribution

Now Xcode will ask for the team to use. Then it looks up the Ad Hoc provisioning
profile and signs the app.

You may get a message that says codesign wants to sign using key … in your
keychain. This is Xcode asking for permission to use your distribution certificate.
Click the Always Allow button or it will ask every time, which gets annoying
quickly.

When it’s done, Xcode puts a new folder on your Desktop with a StoreSearch.ipa
file inside. This is the file that you will give to your beta testers. An IPA file is simply
a ZIP file that contains a folder named “Payload” and your application bundle.

The .ipa file

Give this .ipa together with StoreSearch_Ad_Hoc.mobileprovision to your beta
testers and they will be able to run the app on their devices.

This is what they have to do. It’s probably a good idea for you to follow along with
these steps, so you can verify that the Ad Hoc build actually worked.

1. Open iTunes and go to the Apps screen.

2. Drag StoreSearch.ipa into the Apps screen.

3. Drag StoreSearch_Ad_Hoc.mobileprovision file into the Apps screen.

4. Connect your iPhone or iPad to the computer.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 282

5. Sync with iTunes.

That’s it. Now the app should appear on the device. If iTunes balks and gives an
error, then nine times out of ten you did not sign the app with the correct Ad Hoc
profile or the user’s device ID is not registered with the profile.

Ad Hoc distribution is pretty handy. You can send versions of the app to beta testers
(or clients if you are into contract development) without having to upload the app
to the App Store first.

There are practical limits to Ad Hoc distribution, primarily because it is intended as
a testing mechanism, not as an alternative to the App Store. For example, Ad Hoc
profiles are valid only for a few months, and you can only register 100 devices. You
can reset these device IDs only once per year so be judicious about registering new
devices.

It’s a good idea to test your apps using Ad Hoc distribution before you submit them
to the App Store, just so you’re sure everything works as it’s supposed to outside of
Xcode.

TestFlight
iOS has a built-in beta testing service, TestFlight. In some ways this is simpler to
use than Ad Hoc distribution, especially if you have many beta testers.

With TestFlight you no longer have to add the user’s device ID (or UDID) to your
development account. Instead you can send invitations to up to 1000 testers, per
app. All a tester needs is an Apple ID and the TestFlight app.

Once they’ve accepted your invitation, the testers can install your beta version right
from the TestFlight app. With this service your testers don’t need to fuss with IPA
files and iTunes anymore. It doesn’t get much easier than that!

However, when you make your apps available through TestFlight they will be
reviewed by Apple’s App Store team first, something that can take a few days. And
every update needs to be reviewed again. This is not needed with Ad Hoc builds.

Even if you use TestFlight for beta testing, it’s still a good idea to make an Ad Hoc
build for yourself before you submit the app to the store. This is your last chance to
catch bugs for the app goes out to (paying) customers!

Read more on TestFlight: https://developer.apple.com/testflight/

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 283

Submitting to the App Store
After months of slaving away at your new app, version 1.0 is finally ready. Now all
that remains is submitting it to the App Store.

Doing so is actually fairly straightforward and I’ll show you the steps here.

➤ You will need to create a new distribution profile on the iOS Member Center first.
Go to Provisioning Profiles, Distribution in the sidebar and click the + button.
This time you’ll make an App Store profile.

Choosing the App Store distribution profile

➤ The next step asks you for the App ID. Select the same App ID as before.

➤ The third step asks for your distribution certificate. Select the same certificate as
before. There is no step for choosing devices; that is only required for Ad Hoc
distribution.

➤ Give the profile the name StoreSearch App Store and click Generate.

Naming the provisioning profile

You don’t have to download this provisioning profile, as Xcode will automatically
fetch it from the Member Center when the time comes to sign the app.

You also do not have to re-build the app. You can use the archived version that you
made earlier (no doubt you have tested the Ad Hoc version and found no bugs).

However, you first have to set up the application on iTunes Connect.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 284

➤ Surf to itunesconnect.apple.com. Sign in using your Developer Program account.

If you’ve never been to iTunes Connect before, then make sure to first visit the
Agreements, Tax, and Banking section and fill out the forms. All that stuff has to
be in order before your app can be distributed on the App Store.

The iTunes Connect web site

Note: The iTunes Connect interface changes from time to time, so what you
see in your browser may be slightly different from these screenshots. The
instructions that follow may not be 100% applicable anymore by the time you
read this, but the general process of submitting an app will still be the same.

If this is the first app that you’re adding, you will be asked to enter the name under
which you wish to publish your apps on the store. You can use your own name or a
company name, but choose carefully, you only get to pick this once and it’s a big
hassle to change later!

➤ When you’ve taken care of the administrativia, click on My Apps and then the +
button and choose New App.

➤ Now is the time to enter some basic details about the app:

Entering the name and bundle ID of the app

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 285

I entered StoreSearch as the name for the app.

The SKU (or “skew”) is an identifier for your own use; it stands for “stock-keeping
unit”. When you get sales reports, they include this SKU. It’s purely something for
your own administration.

For Bundle ID you pick the App ID that you used to make the distribution
provisioning profile.

Note: If your Bundle ID is not in the list, then make sure that it is not being
used by one of your other apps (if you have them) and that you already made
the distribution profile for it.

After you click Create, iTunes Connect presents you with the page that lets you
enter the details for the new app. In the various sections you have to supply the
following metadata about the app:

• The name of the app what will appear on the App Store

• The primary and secondary category that the app will be listed under

• You can upload up to five screenshots and one 30-second movie per device. You
need to supply screenshots for 3.5-inch, 4-inch, 4.7-inch, and 5.5-inch iPhones,
and the iPad. All these screenshots must be for Retina resolutions.

• A description that will be visible on the store

• A list of keywords that customers can search for (limited to 100 characters)

• A URL to your website and support pages, and an optional privacy policy

• A 1024×1024 icon image

• The version number

• Copyright information

• Your contact details. Apple will contact you at this address if there are any
problems with your submission.

• A rating if your app contains potentially offensive material

• Notes for the reviewer. These are optional but a good idea if your app requires a
login of some kind. The reviewer will need to be able to login to your app or
service in order to test it.

• When your app should become available

• The price for the app

• Any In-App Purchases that you’re offering

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 286

If your app supports multiple languages, then you can also supply a translated
description, screenshots and even application name.

For more info, consult the iTunes Connect Developer Guide, available under
Resources and Help on the home page.

Make a good first impression
People who are searching or browsing the store for cool new apps generally look at
things in this order:

1. The name of the app. Does it sound interesting or like it does what they are
looking for?

2. The icon. You need to have an attractive icon. If your icon sucks, your app
probably does too. Or at least that’s what people think and then they’re gone.

3. The screenshots. You need to have good screenshots that are exciting and make
it clear what your app is about. A lot of developers go further than just regular
screenshots; they turn these images into small billboards for their app.

4. App preview video. Create a 15 to 30-second video that shows off the best
features of your app.

5. If you didn’t lose the potential customer in the previous steps, they might finally
read your description for more info.

6. The price. If you’ve convinced the customer they really can’t live without your
app, then the price usually doesn’t matter that much anymore.

So get your visuals to do most of the selling for you. Even if you can’t afford to hire
a good graphic designer to do your app’s user interface, at least invest in a good
icon. It will make a world of difference in sales.

The Build section in the 1.0 Prepare for Submission section lists the actual app
upload. Right now this section is empty.

Let’s go back to Xcode so we can upload this guy!

➤ In the Xcode Organizer, go to the Archives tab, select the build you did earlier
and choose Validate.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 287

There are a bunch of things that can go wrong when you submit your app to the
store (for example, forgetting to update your version number when you do an
update, or a code signing error) and the Validate option lets you check this from
within Xcode, so it’s worth doing.

If you get an error at this point, double check that:

• The Bundle Identifier in Xcode corresponds with the App ID from the Dev Center
and the Bundle ID that you chose in iTunes Connect.

• You have a valid iOS Distribution Certificate and an active App Store Distribution
Profile for this App ID (check the iOS Dev Center).

• The Team is set up properly in the Xcode Project Settings screen.

After fixing any of these issues, do Product → Archive again and validate the new
archive.

Excellent! Now that the app checks out, you can finally submit it. This doesn’t
guarantee Apple won’t reject your app from the store, it just means that it will pass
the initial round of validations.

Note: You don’t have to submit your source code to Apple, only the final
application bundle.

➤ In the Xcode Organizer, select the archive again and click Upload to App Store.

After a minute or two, you should see a confirmation:

And now the long wait begins…

Head back to iTunes Connect, reload the page for your app, and go to the Build
section. There is a + button that lets you add a build.

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 288

Adding a build

This associates the archive you just uploaded with this app.

After filling out all the fields, click the Save button at the top. When you’re ready to
submit the app, press Submit for Review.

Your app will now enter the App Store approval process. If you’re lucky the app will
go through in a few days, if you’re unlucky it can take several weeks. These days
the wait time is fairly short. See http://appreviewtimes.com for an indication of how
long you’ll have to wait.

If you find a major bug in the mean time, you can reject the file you uploaded on
iTunes Connect and upload a new one, but this will put you back at square one and
you’ll have to wait a week again.

If after your app gets approved you want to upload a new version of your app, the
steps are largely the same. You go to iTunes Connect and create a new version for
the app, fill in some questions, and upload the new binary from Xcode.

Updates take about the same amount of time to get reviewed as new apps, so you’ll
always have to be patient for a few days. (Tip: Don’t forget to update the version
number!)

The end
Awesome, you’ve done it! You made it all the way through The iOS Apprentice. It’s
been a long journey but I hope you have learned a lot about iPhone and iPad
programming, and software development in general. I had a lot of fun writing these
tutorials and I hope you had a lot of fun reading them!

Because these tutorials are packed with tips and information you may want to go
through them again in a few weeks, just to make sure you’ve picked up on
everything!

The world of mobile apps now lies at your fingertips. There is a lot more to be
learned about iOS and I encourage you to read the official documentation – it’s
pretty easy to follow once you understand the basics. And play around with the
myriad of APIs that the iOS SDK has to offer.

Most importantly, go write some apps of your own!

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 289

Credits for this tutorial: The shopping cart from the app icon is based on a design
from the Noun Project (thenounproject.com).

Want to learn more?
There are many great videos and books out there to learn more about iOS
development. Here are some suggestions for you to start with:

• The iOS Developer Library has the full API reference, programming guides, and
sample code: developer.apple.com/develop/

• The iOS Technology Overview gives a good introduction to what is possible on the
iPhone and iPad: developer.apple.com/library/ios/documentation/Miscellaneous/
Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html

• Mobile Human Interface Guidelines (the “HIG”): developer.apple.com/ios/human-
interface-guidelines/

• iOS App Programming Guide: developer.apple.com/library/ios/documentation/
iPhone/Conceptual/iPhoneOSProgrammingGuide/Introduction/Introduction.html

• View Controller Programming Guide: https://developer.apple.com/library/
content/featuredarticles/ViewControllerPGforiPhoneOS/#//apple_ref/doc/uid/
TP40007457-CH2-SW1

• The WWDC videos. WWDC is Apple’s yearly developer conference and the videos
of the presentations can be watched online at developer.apple.com/videos/. It’s
really worth it!

• Myself and the rest of the raywenderlich.com team also have several other books
for sale, including more advanced tutorials on iOS development and books about
game programming on iOS. If you’d like to check these out, visit our store here:
www.raywenderlich.com/store

Stuck?
If you get stuck, ask for help. Sites such as Stack Overflow (stackoverflow.com),
the Apple Developer Forums (forums.developer.apple.com), and iPhoneDevSDK
(www.iphonedevsdk.com/forum/) are great, and let’s not forget our own forums
(forums.raywenderlich.com).

I often go on Stack Overflow to figure out how to write some code. I usually more-
or-less know what I need to do – for example, resize a UIImage – and I could spend
a few hours figuring out how to do it on my own, but chances are someone else
already wrote a blog post about it. Stack Overflow has tons of great tips on almost
anything you can do with iOS development.

However, don’t post questions like this:

“i am having very small problem i just want to hide load more data option in

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 290

tableview after finished loading problem is i am having 23 object in json and i am
parsing 5 obj on each time at the end i just want to display three object without
load more option.”

This is an actual question that I copy-pasted from a forum. That guy isn’t going to
get any help because a) his question is unreadable; b) he isn’t really making it easy
for others to help him.

Here are some pointers on how to ask effective questions:

• Getting Answers http://www.mikeash.com/getting_answers.html

• What Have You Tried? http://mattgemmell.com/what-have-you-tried/

• How to Ask Questions the Smart Way http://www.catb.org/~esr/faqs/smart-
questions.html

And that’s a wrap!
I hope you learned a lot through the iOS Apprentice, and that you take what you’ve
learned to go forth and make some great apps of your own.

Above all, have fun programming, and let me know about your creations!

— Matthijs Hollemans

iOS Apprentice Tutorial 4: StoreSearch

raywenderlich.com 291

	Tutorial 4: StoreSearch
	The StoreSearch app
	In the beginning
	Custom table cells and nibs
	The debugger
	It’s all about the networking
	Asynchronous networking
	URLSession
	The Detail pop-up
	Fun with landscape
	Refactoring the search
	Internationalization
	The iPad
	Distributing the app
	The end

